Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

The universe’s secret harvest: Shedding light on ‘the cosmic grapes’

Astronomers have discovered a remarkably clumpy rotating galaxy that existed just 900 million years after the Big Bang, shedding new light on how galaxies grew and evolved in the early universe. Nicknamed the “Cosmic Grapes,” the galaxy appears to be composed of at least 15 massive star-forming clumps—far more than current theoretical models predict could exist within a single rotating disk at this early time.

The discovery, published in Nature Astronomy, was made possible by an extraordinary combination of observations from the Atacama Large Millimeter/submillimeter Array (ALMA) and the James Webb Space Telescope (JWST), all focused on a single galaxy that happened to be perfectly magnified by a foreground galaxy cluster through gravitational lensing. In total, more than 100 hours of telescope time were dedicated to this single system, making it one of the most intensively studied galaxies from the .

Although the galaxy had appeared as a smooth, single disk-like object in previous Hubble images, the powerful resolution of ALMA and JWST, enhanced by , revealed a dramatically different picture: a rotating galaxy teeming with massive clumps, resembling a cluster of grapes. The finding marks the first time astronomers have linked small-scale and large-scale rotation in a typical galaxy at cosmic dawn, reaching spatial resolutions down to just 10 parsecs (about 30 light-years).

Programmable soft material bends, bounces and absorbs energy on demand

Scientists at Lawrence Livermore National Laboratory (LLNL) and their collaborators have created a new class of programmable soft materials that can absorb impacts like never before, while also changing shape when heated.

The research—which includes collaborators from Harvard University, the California Institute of Technology (Caltech), Sandia National Laboratories and Oregon State University—opens the door to smarter, lighter and more resilient materials that respond to the world around them. The research is published in the journal Advanced Materials.

Built from liquid crystal elastomers (LCEs)—rubbery polymers that shift in response to heat, light or stress—the team 3D-printed the materials into carefully engineered lattice structures. These lattices can be designed to absorb energy, stiffen, soften or even change shape, depending on their architecture and environmental conditions.

AI accelerates development of advanced heat-dissipating polymers

A machine learning method developed by researchers from the Institute of Science Tokyo, the Institute of Statistical Mathematics, and other institutions accurately predicts liquid crystallinity of polymers with 96% accuracy. They screened over 115,000 polyimides and selected six candidates with a high probability of exhibiting liquid crystallinity. Upon successful synthesis and experimental analyses, these liquid crystalline polyimides demonstrated thermal conductivities up to 1.26 W m⁻¹ K⁻¹, accelerating the discovery of efficient thermal materials for next-generation electronics.

Finding new polymer materials that can efficiently dissipate heat while maintaining high reliability is one of the biggest challenges in modern electronics. One promising solution is liquid crystalline polyimides, a special class of polymers whose molecules naturally align into highly ordered structures.

These ordered chains create pathways for heat flow, making liquid crystalline polyimides highly attractive for thermal management in semiconductors, flexible displays, and next-generation devices. However, designing these polymers has long relied on trial and error because researchers lacked clear design rules to predict whether a polymer would form a liquid crystalline phase.

New Discovery Rewrites the Rules of Protein Stability and Evolution

A large-scale experiment has uncovered the fundamental rules that govern protein stability, opening the door to more rapid development of drugs and enzymes. Proteins are essential molecular machines that power countless processes in living organisms. They help turn sunlight into energy, support t

Radiation Shield Improves Optical Clocks

A new experimental design eliminates the top source of clock uncertainty.

Optical lattice clocks (OLCs) are among the world’s best atomic clocks. Their largest source of uncertainty results from the ubiquitous blackbody radiation (BBR). Now Youssef Hassan of the National Institute of Standards and Technology in Colorado and his colleagues have demonstrated a cryogenic OLC with a radiation shield that virtually eliminates BBR-associated uncertainty [1]. The researchers expect this OLC design to allow major improvements in clock accuracy.

In an OLC, hundreds to tens of thousands of atoms are lined up in a 1D lattice formed by a laser beam. A second (clock) beam, whose frequency can be tuned, then excites the atoms to a specific quantum state. The clock-beam frequency that maximizes the number of atoms making the transition defines the “ticking rate” of the OLC. BBR perturbs the atoms’ quantum states and decreases the OLC’s accuracy.

/* */