Toggle light / dark theme

You wouldn’t microwave fish around your worst enemy—the smell lingers both in kitchen and memory. It is one few of us like, let alone have positive associations with. But what makes our brains decide a smell is stinky?

A new study from UF Health researchers reveals the mechanisms behind how your brain decides you dislike—even loathe—a smell. The findings are published in the journal Molecular Psychiatry.

Or as first author and graduate research fellow Sarah Sniffen puts it: How do odors come to acquire some sort of emotional charge?

Researchers at São Paulo State University (UNESP) in Brazil have identified a robust set of genetic markers associated with meat quality in the Nelore cattle breed (Bos taurus indicus) genome. The results pave the way for substantial progress in the genetic enhancement of the Zebu breed, which accounts for about 80% of the Brazilian beef herd.

The research has direct implications for the productivity and quality of Brazilian beef, reinforcing the country’s standing as a major beef exporter. The results are published in the journal Scientific Reports.

In previous studies, the group had identified genes and proteins by studying meat and carcass characteristics separately using different techniques. For the current study, however, the researchers integrated these techniques and examined multiple characteristics using data from 6,910 young Nelore bulls from four commercial genetic improvement programs.

Research has shown that large language models (LLMs) tend to overemphasize information at the beginning and end of a document or conversation, while neglecting the middle.

This “position bias” means that if a lawyer is using an LLM-powered virtual assistant to retrieve a certain phrase in a 30-page affidavit, the LLM is more likely to find the right text if it is on the initial or final pages.

MIT researchers have discovered the mechanism behind this phenomenon.

The concatenation of both ideas allows us to conclude that entropy exchanges tend to zero when the temperature tends to zero (which is Nernst’s theorem) and that absolute zero is inaccessible.

Martin-Olalla points out that a fundamental problem in thermodynamics is to distinguish the sensation of temperature, the sensations of hot and cold, from the abstract concept of temperature as a physical quantity. In the discussion between Nernst and Einstein, temperature was merely an empirical parameter: the absolute zero condition was represented by the condition that the pressure or volume of a gas became close to zero.

Formally, the second principle of thermodynamics provides a more concrete idea of the natural zero of temperature. The idea is not related to any sensation, but to that engine imagined by Nernst but which has to be virtual. This radically changes the approach to the proof of the theorem.

Lasers have widespread applications as a light source in a variety of fields, including manufacturing, medicine, high-speed communications, electronics, and scientific research.

In recent years, the demand for lasers with increased control over their output has grown significantly. In particular, ultranarrow mode-locked lasers, which can produce extremely short laser pulses (short bursts of light) ranging from picoseconds to nanoseconds, have received considerable attention. Such are extremely beneficial for many applications—from diamond cutting to semiconductor manufacture. However, these applications can be further improved with the incorporation of lasers with tunable pulse duration.

A laser works by reflecting light back and forth between a highly reflective and a selective reflective mirror inside a cavity, and then amplifying it using a material called the gain medium. Conventional continuous-wave lasers emit a continuous beam of light waves (modes) with different wavelengths and random phases.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

This paper studies whether working from home (WFH) affects workers’ performance in public sector jobs. Studying public sector initiatives allows us to establish baseline estimates on the impact of WFH net of incentives. Exploiting novel administrative data and plausibly exogenous variation in work location, we find that WFH increases productivity by 12%. These productivity gains are primarily driven by reduced distractions. They are not explained by differences in quality, shift length, or task allocation. The productivity gains more than double when tasks are assigned by the supervisor.

ALS is a cruel disease. It robs the body of its ability to control itself—the ability to move, the ability to communicate. While there are currently no effective treatments to reverse its debilitating symptoms, Allen Institute researchers have opened a window of hope.

For the first time ever, scientists have developed a precise genetic toolkit that can target the exact nerve cells destroyed by the disease and potentially deliver therapies where they are needed most—a discovery that could dramatically speed up the quest for a cure. The findings were recently published in the journal Cell Reports.

Amyotrophic lateral sclerosis (ALS) is a progressive and devastating disease that gradually kills off motor neurons in the brain and spinal cord that control voluntary muscle movement. As these neurons die, people with ALS lose the ability to move, speak, and eventually breathe. Despite decades of research, there’s still no effective treatment or cure. Unlike many other brain cells, motor neurons in the spinal cord have been extremely hard to reach with genetic tools. This has slowed down research and made it hard to test new treatments in the cells that matter most.