Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Diagnosing diabetes may soon be as easy as breathing into a bag

In the U.S., one in five of the 37 million adults who has diabetes doesn’t know it. Current methods of diagnosing diabetes and prediabetes usually require a visit to a doctor’s office or lab work, both of which can be expensive and time-consuming. Now, diagnosing diabetes and prediabetes may be as simple as breathing.

A research team led by Huanyu “Larry” Cheng, James L. Henderson, Jr. Memorial Associate Professor of Engineering Science and Mechanics at Penn State, has developed a sensor that can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample. Their results are published in the Chemical Engineering Journal.

Previous diagnostic methods often used glucose found in blood or sweat, but this sensor detects acetone levels in the breath. While everyone’s breath contains acetone as a byproduct of burning fat, acetone levels above a threshold of about 1.8 parts per million indicate diabetes.

To see the world in a grain of sand: Investigating megaripples at Kerrlaguna on Mars

On Mars, the past is written in stone—but the present is written in sand. Last week, Perseverance explored inactive megaripples to learn more about the wind-driven processes that are reshaping the Martian landscape every day.

After wrapping up its investigation at the contact between clay and olivine-bearing rocks at Westport, Perseverance is journeying south once more. Previously, attempts were made to drive uphill to visit a new rock exposure called Midtoya. However, a combination of the steep slope and rubbly, rock-strewn soil made drive progress difficult, and after several attempts, the decision was made to return to smoother terrain., the effort wasn’t fruitless, as the rover was able to gather data on new spherule-rich rocks thought to have rolled downhill from Midtoya, including the witch hat or helmet-shaped rock “Horneflya,” which has attracted much online interest.

More recently, Perseverance explored a site called Kerrlaguna where the steep slopes give way to a field of megaripples: large windblown sand formations up to 1 meter (about 3 feet) tall. The science team chose to perform a mini-campaign to make a detailed study of these features. Why such interest? While often the rover’s attention is focused on studying processes in Mars’ distant past that are recorded in ancient rocks, we still have much to learn about the modern Martian environment.

How pediatric brain tumors grow: Blocking a chemical messenger could offer new route to treatment

The most common type of brain tumor in children, pilocytic astrocytoma (PA), accounts for about 15% of all pediatric brain tumors. Although this type of tumor is usually not life-threatening, the unchecked growth of tumor cells can disrupt normal brain development and function.

Current treatments focus mainly on removing the tumor cells, but recent studies have shown that non-cancerous cells, such as , also play a role in brain tumor formation and growth, suggesting novel approaches to treating these cancers.

Scientists have long known that a nerve cell signaling chemical called can increase the growth of cancers throughout the body, but despite years of investigation, they haven’t figured out exactly how this happens, or how to stop it.

Circle versus rectangle: Finding ‘Earth 2.0’ may be easier using a new telescope shape

The Earth supports the only known life in the universe, all of it depending heavily on the presence of liquid water to facilitate chemical reactions. While single-celled life has existed almost as long as Earth itself, it took roughly three billion years for multicellular life to form. Human life has existed for less than one-10 thousandth of the age of Earth.

All of this suggests that life might be common on planets that support liquid water, but it might be uncommon to find life that studies the universe and seeks to travel through space. To find extraterrestrial life, it might be necessary for us to travel to it.

However, the vastness of space, coupled with the impossibility of traveling or communicating faster than the , places practical limits on how far we can roam.

Elon Musk’s Secret ‘Starfall’ Programme for SpaceX Starship

SpaceX’s rumored “Starfall” program, related to its Starship initiative, aims to revolutionize in-space manufacturing, enabling advancements in various fields and reducing cargo transportation costs to unlock economic potential in space ## ## Questions to inspire discussion.

In-Orbit Manufacturing Potential.

🚀 Q: What unique advantages does in-orbit manufacturing offer? A: In-orbit manufacturing provides no gravity, perfect fluid flow, stable heat flow, and no air moving heat around, enabling growth of structures without scaffolding and benefiting industries like pharmaceuticals, advanced materials, and military logistics.

🏭 Q: Which industries could be disrupted by in-orbit manufacturing in the 2040s? A: In-orbit manufacturing could disrupt terrestrial industries in the 2040s, particularly pharmaceuticals, advanced materials, and military logistics, allowing production of high-value goods like protein crystals, retinal organoids, ZBLAN fiber, and semiconductor ingots in space.

Starfall Program.

🛰️ Q: What is SpaceX’s Starfall program? A: Starfall is a secret SpaceX program using small return pods from Starship to bring high-value goods back from orbit, potentially slashing the $40,000/kg cost of returning materials to Earth.

Starship IFT-10 & Starlink

SpaceX’s successful Starship IFT-10 test and advancements in Starlink technology are poised to significantly reduce launch costs and disrupt the broadband landscape, paving the way for a more efficient and cost-effective space travel and satellite internet service.

## Questions to inspire discussion.

Starship and Starlink Advancements.

🚀 Q: How does Starship improve Starlink satellite deployment? A: Starship enables deployment of V3 Starlink satellites that are 40-50X cheaper per unit bandwidth compared to Falcon 9, according to Mach33 research.

📡 Q: What advantages do larger satellites on Starship offer? A: Starship’s size allows for larger satellites delivering more bandwidth per mass, improving physics scaling laws and making it 50X more efficient than Falcon 9 for launching bandwidth per kilogram.

Cost and Capacity Improvements.

/* */