Findings show that older people’s pupils constricted less in response to color chroma, particularly for green and magenta hues, suggesting a decline in color sensitivity with age.

“It performs very well. Depending on where you’re looking at along the coast, it would be quite difficult to identify a simulated hurricane from a real one,” Pintar said.
However, the system isn’t without flaws. The data it is fed does not account for the potential effects of rising temperatures, and the simulated storms produced for areas with less data were not as plausible.
“Hurricanes are not as frequent in, say, Boston as in Miami, for example. The less data you have, the larger the uncertainty of your predictions,” NIST Fellow Emil Simiu said.
Collisions of high energy particles produce “jets” of quarks, anti-quarks, or gluons. Due to the phenomenon called confinement, scientists cannot directly detect quarks. Instead, the quarks from these collisions fragment into many secondary particles that can be detected.
Scientists recently addressed jet production using quantum simulations. They found that the propagating jets strongly modify the quantum vacuum—the quantum state with the lowest possible energy. In addition, the produced quarks retain quantum entanglement, the linkage between particles across distances. This finding, published in Physical Review Letters, means that scientists can now study this entanglement in experiments.
This research performed quantum simulations that have detected the modification of the vacuum by the propagating jets. The simulations have also revealed quantum entanglement among the jets. This entanglement can be detected in nuclear experiments. The work is also a step forward in quantum-inspired classical computing. It may result in the creation of new application-specific integrated circuits.
“The memory requirements for PRIYA simulations are so big you cannot put them on anything other than a supercomputer,” Bird said.
TACC awarded Bird a Leadership Resource Allocation on the Frontera supercomputer. Additionally, analysis computations were performed using the resources of the UC Riverside High-Performance Computer Cluster.
The PRIYA simulations on Frontera are some of the largest cosmological simulations yet made, needing over 100,000 core-hours to simulate a system of 30723 (about 29 billion) particles in a ‘box’ 120 megaparsecs on edge, or about 3.91 million light-years across. PRIYA simulations consumed over 600,000 node hours on Frontera.
Researchers at the University of Cordoba, in collaboration with other institutions, have developed a new type of battery using hemoglobin as a catalyst in zinc-air batteries. This biocompatible battery can function for up to 30 days and offers several advantages, such as sustainability and suitability for use in human body devices. Despite its non-rechargeable nature, this innovation marks a significant step towards environmentally friendly battery alternatives, addressing the limitations of current lithium-ion batteries. (Artist’s Concept.) Credit: SciTechDaily.com.
Researchers at the Chemical Institute for Energy and the Environment (IQUEMA) at the University of Cordoba have developed a battery that employs hemoglobin to facilitate electrochemical reactions, maintaining functionality for approximately 20 to 30 days.
Hemoglobin is a protein present in red blood cells and is responsible for conveying oxygen from the lungs to the different tissues of the body (and then transferring carbon dioxide the other way around). It has a very high affinity for oxygen and is fundamental for life, but, what if it were also a key element for a type of electrochemical device in which oxygen also plays an important role, such as zinc-air batteries?
Pudu Robotics, a leading service robot exporter in China, says that demand and applications are likely to expand globally.
Advanced Quantum Technologies is a peer reviewed journal that has published a paper – Global Room-Temperature Superconductivity in Graphite. The researchers are from Brazil, Italy and Switzerland.
They use the scotch-taped cleaved pyrolytic graphite carrying the wrinkles that resulted from this cleaving to which they also refer as to line defects. They detected experimental evidence for the global zero-resistance state. The experimental data clearly demonstrated that the array of nearly parallel linear defects that form due to the cleaving of the highly oriented pyrolytic graphite hosts one-dimensional superconductivity.
One-Dimensional room temperture and room pressure superconductivity is what part of the theory and claims proposed for LK99 and sulfurized LK99 and PCPOSOS.