Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

New gut-brain circuits found for sugar and fat cravings

Understanding why we overeat unhealthy foods has been a long-standing mystery. While we know food’s strong power influences our choices, the precise circuitry in our brains behind this is unclear. The vagus nerve sends internal sensory information from the gut to the brain about the nutritional value of food. But, the molecular basis of the reward in the brain associated with what we eat has been incompletely understood.

A study published in Cell Metabolism, by a team from the Monell Chemical Senses Center, unravels the internal neural wiring, revealing separate fat and sugar craving pathways, as well as a concerning result: Combining these pathways overly triggers our desire to eat more than usual.

“Food is nature’s ultimate reinforcer,” said Monell scientist Guillaume de Lartigue, Ph.D., lead author of the study. “But why fats and sugars are particularly appealing has been a puzzle. We’ve now identified in the gut rather than taste cells in the mouth are a key driver. We found that distinct gut– pathways are recruited by fats and sugars, explaining why that donut can be so irresistible.”

Discovery of low-lying isomeric states in cesium-136 has applications in particle astrophysics

Large, low-background detectors using xenon as a target medium are widely used in fundamental physics, particularly in experiments searching for dark matter or studying rare decays of atomic nuclei. In these detectors, the weak interaction of a neutral particle—such as a neutrino—with a xenon-136 nucleus can transform it into a cesium-136 nucleus in a high-energy excited state.

The gamma rays emitted as the cesium-136 relaxes from this could allow scientists to separate rare signals from background radioactivity. This can enable new measurements of solar neutrinos and more powerful searches for certain models of dark matter. However, searching for these events has been difficult due to a lack of reliable nuclear data for cesium-136. Researchers need to know the properties of cesium-136’s , which have never been measured for this isotope.

This research, appearing in Physical Review Letters, provides direct determination of the relevant data by measuring from cesium-136 produced in at a . Importantly, this research reveals the existence of so-called “isomeric states”—excited states that exist for approximately 100ns before relaxing to the ground state.

Astronomers Have Mapped the Milky Way’s Magnetic Fields in 3D

Researchers have developed the first 3D maps of magnetic field structures within a spiral arm of the Milky Way. While we’ve seen smaller-scale magnetic fields before, this is much larger, showing the overall magnetic pattern in our galaxy. These fields are incredibly weak, about 100,000 times weaker than the Earth’s magnetic field, but they impact the galaxy, strongly influencing star-forming regions.

Dead Teslas pack Chicago area Supercharger station due to frigid temps

Something to consider for cold weather areas like I live in.


A lot of EV owners were stuck in a parking lot due to charging woes.

Watch FOX 32 Chicago Live: https://www.fox32chicago.com/live.

FOX 32 Chicago delivers breaking news, live events, investigations, politics, entertainment, business news and local stories from Chicago and across the nation.

Watch more FOX 32 Chicago on YouTube:

This New Nuclear Battery Could Soon Go On the Market

They’re working on it.


A Chinese company has announced they’re planning to mass-produce tiny nuclear batteries that can last up to 50 years, possibly beating both a British and an American company who have tried to put those on the market for several years. What does that mean? Will we soon all power our phones with nuclear power? Let’s have a look.

🤓 Check out our new quiz app ➜ http://quizwithit.com/
💌 Support us on Donatebox ➜ https://donorbox.org/swtg.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
👉 Transcript with links to references on Patreon ➜ / sabine.
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
🖼️ On instagram ➜ / sciencewtg.