Toggle light / dark theme

Still a big maybe but it gives them other ideas/possibilities. Hopefully they succeed soon! My mother has glaucoma. It’ll probably be decades before this cure happens though. Unless it can be accelerated which is predicted by Ray Kurzweil in his book The Singularity is Near. I think other futurists have said similar things though I’m not familiar with all of them, I saw a talk by one for NASA.


In efforts to tackle the leading cause of blindness in developed countries, researchers have recruited nanotechnology to help regrow retinal cells.

Macular degeneration is a form of central vision loss, which has massive social, mobility, and mental consequences. It impacts hundreds of millions of people globally and is increasing in prevalence.

The degeneration is the consequence of damaged retinal pigment cells. Our bodies are unable to grow and replace these cells once they start dying, so scientists have been exploring alternative methods to replace them and the membrane within which they sit.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.

The crushing demand for AI has also revealed the limits of the global supply chain for powerful chips used to develop and field AI models.

The continuing chip crunch has affected businesses large and small, including some of the AI industry’s leading platforms and may not meaningfully improve for at least a year or more, according to industry analysts.

The latest sign of a potentially extended shortage in AI chips came in Microsoft’s annual report recently. The report identifies, for the first time, the availability of graphics processing units (GPUs) as a possible risk factor for investors.

A former Twitter executive said she slept on the office floor because Elon Musk gave her a “nearly impossible deadline.”

Esther Crawford, the former director of product management at the social-media giant, which rebranded as X this week, retweeted a photo of her wrapped up in a sleeping bag on the floor of one of Twitter’s conference rooms in November. “When your team is pushing round the clock to make deadlines sometimes you #SleepWhereYouWork,” Crawford wrote in the caption.

The photo of her lying on the floor and wearing an eye mask went viral.

Now fast forward 10 more years. That same man and his peers will have counted 70 circles round the sun. But John will remain biologically 60. At the same time, someone who is 30 years old in the year 2033 could theoretically begin the therapy at age 30, and stick at a biological age of 30 for the next 30 years, when their calendar would call them 60. That’s what gene therapies for longevity could do.


Longevity startups are riding high as a wave of gene therapies advance through clinical trials. Can they actually turn back the clock?

So far, gene therapy has been approved by the U.S. Food and Drug Administration (FDA) for only a couple of applications like rare inherited diseases and blood cancer. That said, more than 2,000 clinical trials are taking place in 2023, with 200 of them having already reached phase 3 clinical trials. A slew of upcoming gene therapies could be approved—possibly in the months to come—in the United States and Europe, targeting everything from sickle cell disease and hemophilia to metastatic skin cancer. In this future, gene therapy will be approved for everything we can imagine—and many things we can’t.

On Wednesday, Meta announced it is open-sourcing AudioCraft, a suite of generative AI tools for creating music and audio from text prompts. With the tools, content creators can input simple text descriptions to generate complex audio landscapes, compose melodies, or even simulate entire virtual orchestras.

AudioCraft consists of three core components: AudioGen, a tool for generating various audio effects and soundscapes; MusicGen, which can create musical compositions and melodies from descriptions; and EnCodec, a neural network-based audio compression codec.

Electronic devices typically use the charge of electrons, but spin — their other degree of freedom — is starting to be exploited. Spin defects make crystalline materials highly useful for quantum-based devices such as ultrasensitive quantum sensors, quantum memory devices, or systems for simulating the physics of quantum effects. Varying the spin density in semiconductors can lead to new properties in a material — something researchers have long wanted to explore — but this density is usually fleeting and elusive, thus hard to measure and control locally.

Now, a team of researchers at MIT and elsewhere has found a way to tune the spin density in diamond, changing it by a factor of two, by… More.


MIT researchers found a way to tune the spin density in diamond by applying an external laser or microwave beam. The finding could open new possibilities for advanced quantum devices.