Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Antibiotics-Induced Intracranial Hypertension: A Case Report With Literature Review

Idiopathic intracranial hypertension (IIH) is a rare condition characterized by increased intracranial pressure, with an unknown cause. However, the pathophysiology of antibiotic-induced IIH remains unclear. The clinical symptoms include headache, visual disturbances, and vomiting. The diagnosis is confirmed by an elevated intracranial pressure (ICP) with normal CSF study and cerebral imaging. Management includes discontinuing the offending antibiotic and reducing ICP with medications such as acetazolamide or diuretics. Therefore, surgical intervention may be necessary in severe cases.

In this article, we report the case of a 19-year-old patient, admitted with symptoms of intracranial hypertension syndrome, occurring three days after receiving antibiotics (gentamicin, penicillin). Physical examination revealed bilateral optic disc edema.

AI vs. Cancer: A Game-Changer!

MIT and Dana-Farber Cancer Institute have teamed up to create an AI model that CRACKS the code of mysterious cancer origins! No more guesswork-this model predicts where tumors come from with up to 95% accuracy. For more insight, visit https://www.channelchek.com #Cancer #CancerBreakthrough #AIinMedicine #MedicalScience #BioTech #FutureOfHealthcare #FightCancer #HealthTech #CancerResearch #PrecisionMedicine

Major discovery in the genetics of Down syndrome

Researchers at CHU Sainte-Justine and Université de Montréal have discovered a new mechanism involved in the expression of Down syndrome, one of the main causes of intellectual disability and congenital heart defects in children. The study’s findings were published today in Current Biology.

Down (SD), also called trisomy 21 syndrome, is a genetic condition that affects approximately one in every 800 children born in Canada. In these individuals, many genes are expressed abnormally at the same time, making it difficult to determine which contribute to which differences.

Professor Jannic Boehm’s research team focused on RCAN1, a gene that is overexpressed in the brains of fetuses with Down syndrome. The team’s work provides insights into how the gene influences the way the condition manifests itself.

/* */