Toggle light / dark theme

Today I’m checking out Replica’s AI-Powered Smart NPCs in their impressive new demo for unreal engine 5. In my opinion will quickly change the landscape of gaming and bring a whole new layer of depth to the already impressive worlds we all enjoy. I hope you enjoyed this look into the roots of AI in gaming, thanks for watching and liking.

Download the Demo &

https://www.replicastudios.com/blog/smart-npc-plugin-release.

-Channel Links

Summary: Researchers discovered Heliconius butterflies exhibit spatial learning, marking the first experimental proof of such abilities in any butterfly or moth species. The study suggests these butterflies can learn spatial information on large scales, important for their long-range foraging behavior known as traplining.

Until now, research on insect spatial learning primarily focused on social species like bees and ants.

This new revelation underscores the possibility of more widespread complex learning skills, such as the use of spatial information, in insects than previously recognized.

Just as carbon makes up both the brittle core of a No. 2 pencil and the harder-than-steel diamond in a cutting tool, boron nitride gives rise to compounds that can be soft or hard. Yet, unlike carbon, far less is known about boron nitride’s forms and their responses to changing temperatures and pressures.

Rice University scientists mixed —a soft variety also known as “white graphite”—with cubic boron nitride—a material second to diamond in hardness—and found that the resulting nanocomposite interacted with light and heat in unexpected ways that could be useful in next-generation microchips, quantum devices and other advanced technology applications.

“Hexagonal boron nitride is widely used in a variety of products, such as coatings, lubricants and cosmetics,” said Abhijit Biswas, a research scientist who is the lead author of a study about the research published in Nano Letters. “It’s quite soft and it is a great lubricant, and very lightweight. It’s also cheap and very stable at room temperature and under atmospheric pressure.

This article is an installment of Future Explored, a weekly guide to world-changing technology. You can get stories like this one straight to your inbox every Thursday morning by subscribing here.

The Australian military is funding a project to grow intelligent “mini-brains” in petri dishes. The goal is to use these “DishBrains” to design better AIs — and, eventually, even combine the two, creating AIs merged with processing features of human brain cells.

By creating just the right conditions, scientists can coax stem cells into growing into “organoids,” three-dimensional tissues that resemble the structure and function of different organs — even brains.

Japanese Prime Minister Fumio Kishida warned of Russia’s nuclear threat and reaffirmed a pledge to work to make the world free of nuclear weapons in a speech marking 78 years since the atomic bomb fell on Hiroshima on Sunday. “As the only country to have experienced the horror of nuclear devastation in war, Japan will press on tirelessly with its efforts to bring about ‘a world without nuclear weapons,’” Kishida said in remarks delivered in Hiroshima, in a tribute to the victims, their families and those still suffering aftereffects of the bomb.

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE

Sign Up on Patreon to get access to the Space Time Discord!
https://www.patreon.com/pbsspacetime.

We have no idea what dark matter is, other than it’s some source of gravity that is completely invisible but exerts way more pull that all of the regular matter. More than all of the stars, all of the gas, all of the black holes…unless dark matter is black holes, then black holes are most of everything. Dark matter constitutes 80% or so of the mass in the universe, which means even our Milky Way galaxy is mostly a vast ball of dark matter that happens to have attracted a relative sprinkling of baryons—atoms in the form of gas, which lit up as starry glitter spinning in the middle of this invisible gravitational well.

Check out the Space Time Merch Store.

Sandwich compounds are special chemical compounds used as basic building blocks in organometallic chemistry. So far, their structure has always been linear.

Recently, researchers of Karlsruhe Institute of Technology (KIT) and the University of Marburg were the first to make stacked sandwich complexes form a nano-sized ring. Physical and other properties of these cyclocene structures will now be further investigated. The researchers report their findings in Nature.

Sandwich complexes were developed about 70 years ago and have a sandwich-like structure. Two flat aromatic organic rings (the “slices of bread”) are filled with a single, central metal atom in between. Like the slices of bread, both rings are arranged in parallel. Adding further layers of “bread” and “filling” produces triple or multiple sandwiches.

A team of scientists led by the University of Oxford have achieved a significant breakthrough in detecting modifications on protein structures. The method, published in Nature Nanotechnology, employs innovative nanopore technology to identify structural variations at the single-molecule level, even deep within long protein chains.

Human cells contain approximately 20,000 -encoding genes. However, the actual number of proteins observed in cells is far greater, with over 1,000,000 different structures known. These variants are generated through a process known as post-translational modification (PTM), which occurs after a protein has been transcribed from DNA.

PTM introduces structural changes such as the addition of chemical groups or carbohydrate chains to the individual amino acids that make up proteins. This results in hundreds of possible variations for the same protein chain.

A University of Minnesota-led team has, for the first time, engineered an atomically thin material that can absorb nearly 100% of light at room temperature, a discovery that could improve a wide range of applications from optical communications to stealth technology. Their paper has been published in Nature Communications.

Materials that absorb nearly all of the —meaning not a lot of light passes through or reflects off of them—are valuable for applications that involve detecting or controlling light.

“Optical communications are used in basically everything we do,” said Steven Koester, a professor in the College of Science and Engineering and a senior author of the paper. “The internet, for example, has optical detectors connecting fiber optic links. This research has the potential to allow these to be done at higher speeds and with greater efficiency.”