Toggle light / dark theme

New technology allows hydrogen to be directly injected into the cylinders like an internal combustion engine.

As the world scrambles to transition to green fuels to achieve carbon neutrality, promoting power sources that use hydrogen as a clean fuel is one strategy to further the move. Now, researchers in South Korea have developed a new technology for a passenger car hydrogen engine that promises to make it more viable for mass production.

The powertrain developed by researchers at the Korea Institute of Machinery and Materials (KIMM) and the Zero-Carbon Engine Research Lab of Hyundai-Kia Motor Company (HMC) is a 2-liter direct injection hydrogen engine that runs entirely on hydrogen fuel.

This soft robot uses “physical intelligence” to navigate complicated surfaces without the need for human or computer intervention.

Engineers have developed a “brainless” soft robot that can effortlessly traverse difficult terrain.

This breakthrough comes from North Carolina State University researchers, who previously created a soft robot capable of navigating basic mazes without the need for human or computer intervention.

There are several perfectly good reasons why water isn’t a popular medium for calligraphers to write in. Constantly shifting and swirling, it doesn’t take long for ink to diffuse and flow out of formation.

An ingenious ‘pen’ developed by the researchers from Johannes Gutenberg University Mainz (JGU) and the Technical University of Darmstadt in Germany, and Huazhong University of Science and Technology in China, could give artists a whole new medium to work with.

The new device is a tiny, 50 micron-wide bead made of a special material that exchanges ions in the liquid, creating zones of relatively low pH. Traces of particles suspended in the water are then drawn to the acidic solution. Drawing out that zone can create persistent, ‘written’ lines.

MIT researchers have demonstrated the first system for ultra-low-power underwater networking and communication, which can transmit signals across kilometer-scale distances.

This technique, which the researchers began developing several years ago, uses about one-millionth the power that existing underwater communication methods use. By expanding their battery-free system’s communication range, the researchers have made the technology more feasible for applications such as aquaculture, coastal hurricane prediction, and climate change modeling.

“What started as a very exciting intellectual idea a few years ago—underwater communication with a million times lower power—is now practical and realistic. There are still a few interesting technical challenges to address, but there is a clear path from where we are now to deployment,” says Fadel Adib, associate professor in the Department of Electrical Engineering and Computer Science and director of the Signal Kinetics group in the MIT Media Lab.

Researchers from the RIKEN Center for Quantum Computing have used machine learning to perform error correction for quantum computers—a crucial step for making these devices practical—using an autonomous correction system that despite being approximate, can efficiently determine how best to make the necessary corrections.

The research is published in the journal Physical Review Letters.

In contrast to , which operate on bits that can only take the basic values 0 and 1, quantum computers operate on “qubits”, which can assume any superposition of the computational basis states. In combination with , another quantum characteristic that connects different qubits beyond classical means, this enables quantum computers to perform entirely new operations, giving rise to potential advantages in some computational tasks, such as large-scale searches, , and cryptography.

Scientists from the University of Ottawa have invented a unique method to create better molecule-based magnets, known as single-molecule magnets (SMMs). This synthetic tour de force has resulted in a two-coordinate lanthanide complex which has magnet-like properties that are intrinsic to the molecule itself. This advancement paves the way for high-capacity hard drives, potential applications in quantum computing.

Performing computation using quantum-mechanical phenomena such as superposition and entanglement.

Almost a century ago, physicists Satyendra Nath Bose and Albert Einstein predicted a theoretical state of matter in which individual particles would, at extremely cold temperatures and low densities, condense into an indistinguishable whole. These so-called Bose-Einstein condensates (BECs) would offer a macroscopic view into the microscopic world of quantum mechanics. In 1995, theoretical BECs became an experimental reality, which garnered the physicists who created them a Nobel Prize. Labs around the world— and even in space —have been creating them ever since.

All of the BECs created so far to ask fundamental questions about quantum mechanics have been made from atoms. It has proven much harder to make molecules cold enough to approach a BEC state, which hover fractions of a degree above absolute zero, and to keep the molecules stable long enough to conduct experiments.

“For twenty years, there have been proposals about what you could do with stable ultracold molecules, but it has been tough on the experimental side because the lifetime of molecular samples has been short,” said Columbia physicist Sebastian Will, whose lab specializes in creating ultracold atoms and molecules.