A new clinical trial suggests stem cell therapy may restore vision in people with advanced dry age-related macular degeneration, a disease that currently has no cure.

The smaller electronic components become, the more complex their manufacture becomes. This has been a major problem for the chip industry for years. At TU Wien, researchers have now succeeded for the first time in manufacturing a silicon-germanium (SiGe) transistor using an alternative approach that will not only enable smaller dimensions in the future, but will also be faster, require less energy and function at extremely low temperatures, which is important for quantum chips.
The key trick lies in the oxide layer that insulates the semiconductor: it is doped and produces a long-range effect that extends into the semiconductor. The technology was developed by TU Wien (Vienna), JKU Linz and Bergakademie Freiberg. The results have now been published in the journal IEEE Electron Device Letters and selected as Editor’s Pick on the cover of the August issue.
OpenAI and NVIDIA today announced a letter of intent for a landmark strategic partnership to deploy at least 10 gigawatts of NVIDIA systems for OpenAI’s next-generation AI infrastructure to train and run its next generation of models on the path to deploying superintelligence. To support this deployment including data center and power capacity, NVIDIA intends to invest up to $100 billion in OpenAI as the new NVIDIA systems are deployed. The first phase is targeted to come online in the second half of 2026 using the NVIDIA Vera Rubin platform.
“NVIDIA and OpenAI have pushed each other for a decade, from the first DGX supercomputer to the breakthrough of ChatGPT,” said Jensen Huang, founder and CEO of NVIDIA. “This investment and infrastructure partnership mark the next leap forward — deploying 10 gigawatts to power the next era of intelligence.”
“Everything starts with compute,” said Sam Altman, cofounder and CEO of OpenAI. “Compute infrastructure will be the basis for the economy of the future, and we will utilize what we’re building with NVIDIA to both create new AI breakthroughs and empower people and businesses with them at scale.”
Every time a eukaryotic cell divides, it faces a monumental challenge: It must carefully duplicate and divide its genetic material (chromosomes) equally, and then rebuild the nuclear envelope around the separated halves. If this process goes wrong, the resulting nuclei can be misshapen or disorganized—features often seen in cancer and aging-related diseases.
A new study from researchers at the Indian Institute of Science (IISc) and Université Paris-Saclay reveals how a key enzyme called Aurora A helps cells pull off this feat. The findings are published in The EMBO Journal.
In dividing cells, structures called spindle poles (or centrosomes) grow in size to generate the microtubule ‘tracks’ that pull chromosomes apart. Once this job is done, the spindle poles must shrink and disassemble so that the nuclear envelope can reform around the separated chromosomes.
Review of “If Anyone Builds It, Everyone Dies: Why Superhuman AI Would Kill Us All” (2025), by Eliezer Yudkowsky and Nate Soares, with very critical commentary.
Yudkowsky and Soares present a stark warning about the dangers of developing artificial superintelligence (ASI), defined as artificial intelligence (AI) that vastly exceeds human intelligence. The authors argue that creating such AI using current techniques would almost certainly lead to human extinction and emphasize that ASI poses an existential threat to humanity. They argue that the race to build smarter-than-human AI is not an arms race but a “suicide race,” driven by competition and optimism that ignores fundamental risks.
Usually when an alchemist shows up promising to turn rocks into gold, you should run the other way. Sure, rocket fuel isn’t gold, but on the moon it’s worth more than its weight in the yellow stuff. So there would be reason to be skeptical if this “Blue Alchemist” was actually an alchemist, and not a chemical reactor under development by the Blue Origin corporation.
The chemistry in question is quite simple, really: take moon dust, which is rich in aluminum silicate minerals, and melt the stuff. Then it’s just a matter of electrolysis to split the elements, collecting the gaseous oxygen for use in your rockets. So: moon dust to air and metals, just add power. Lots and lots of power.
Melting rock takes a lot of temperature, and the molten rock doesn’t electrolyse quite as easily as the water we’re more familiar with splitting. Still, it’s very doable; this is how aluminum is produced on Earth, though notably not from the sorts of minerals you find in moon dust. Given the image accompanying the press release, perhaps on the moon the old expression will be modified to “make oxygen while the sun shines”
A Chinese company has showcased new types of fabrics that can withstand extreme temperatures. Some of the fabric materials presented were waterproof and windproof while remaining breathable.
Safmax presented these advanced fabrics at the second Public Security Tech Expo in Lianyungang, China.
The company’s new flame-retardant material can withstand temperatures up to 2,192 degree Fahrenheit (1,200 degrees Celsius). This fabric can maintain its structure without deforming, shrinking, or melting.
This type of fabric can be used in firefighting suits and fire blankets to isolate airflow during battery fires in new energy vehicles.
Safmax’s new flame-retardant material can withstand high temperatures maintaining its structure without deforming, shrinking, or melting.