Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

White dwarf star has metal scar after gobbling planetary fragment

Astronomers have spotted an unusual sign that a dead star feasted on a fragment of a planet orbiting it: a metal scar on the star’s surface. The revelation sheds light on the dynamic nature of planetary systems even in the end stages of a star’s life cycle — and could foretell the eventual fate of our own solar system, according to the scientists.

Planets form from swirls of gas and dust called a protoplanetary disk that surrounds a newly formed star. But as the star ages and dies, the stellar object can consume the very planets and asteroids it helped create.

Astronomers observed a dead star, known as a white dwarf, located about 63 light-years away from Earth using the European Southern Observatory’s Very Large Telescope in Chile. The observation revealed a metallic feature on the star’s surface that the researchers determined was related to a change detected in the star’s magnetic field. A new study detailing the observation appeared Monday in The Astrophysical Journal Letters.

Stem Cells Model of Early Human Central Nervous System Created

Summary: Researchers have developed the first stem cell culture method that accurately models the early stages of the human central nervous system (CNS), marking a significant breakthrough in neuroscience. This 3D human organoid system simulates the development of the brain and spinal cord, offering new possibilities for studying human brain development and diseases.

By using patient-derived stem cells, the model can potentially lead to personalized treatment strategies for neurological and neuropsychiatric disorders. The innovation opens new doors for understanding the intricacies of the human CNS and its disorders, surpassing the capabilities of previous models.

James Webb Spots Cosmic Foundry Generating Pure Gold

As Space.com reports, the uber-powerful James Webb Space Telescope and its predecessor, the Hubble, have observed a super-long gamma-ray burst (GRB) that occurred when two dense neutron stars collided millions of years ago — and the result, as the telescopes’ instruments detected, was quite literally pure gold.

Neutron stars are the rare result of supernovas, or the explosions associated with dying stars, that don’t turn into black holes. Earlier this week, in fact, the JWST was used to detect the neutron star at the heart of a well-known supernova that scientists believed existed but couldn’t see until now.

Because these bodies are, essentially, small and dense balls of mass, it’s not surprising that something huge happens when they collide. With the power of these two magnificent telescopes, scientists from the University of Rome were able to spot the bright shine, known as a kilonova, of the heavy elements like silver and gold created in the dead stars’ turbulent merger.

OpenAI’s Sora is slow enough to grab a snack while it generates your video

OpenAI’s new text-to-video model, Sora, will likely remain in development for some time before a public release.

According to Bloomberg, OpenAI has not yet set an exact release schedule. There are two reasons for this: One is that OpenAI does not want to take any safety risks, given the number of elections this year. The second reason is that the model is not yet technically ready for release.

When OpenAI unveiled Sora, the company pointed out shortcomings in the model’s physical understanding and consistency. Bloomberg’s tests with two OpenAI-generated prompts confirmed these issues. For example, in the video below, the parrot turns into a monkey at the end.

Laser-focused look at spinning electrons shatters world record for precision

Scientists are getting a more detailed look than ever before at the electrons they use in precision experiments.

Nuclear physicists with the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility have shattered a nearly 30-year-old record for the measurement of parallel spin within an electron beam – or electron beam polarimetry, for short. The achievement sets the stage for high-profile experiments at Jefferson Lab that could open the door to new physics discoveries.

In a peer-reviewed paper published in the journal Physical Review C (“Ultrahigh-precision Compton polarimetry at 2 GeV”), a collaboration of Jefferson Lab researchers and scientific users reported a measurement more precise than a benchmark achieved during the 1994–95 run of the SLAC Large Detector (SLD) experiment at the SLAC National Accelerator Laboratory in Menlo Park, California.