Toggle light / dark theme

Organometallic compounds, molecules made up of metal atoms and organic molecules, are often used to accelerate chemical reactions and have played a significant role in advancing the field of chemistry.

Metallocenes, a type of organometallic compound, are known for their versatility and special “sandwich” structure. Their discovery was a significant contribution to the field of organometallic chemistry and led to the awarding of the Nobel Prize in Chemistry in 1973 to the scientists who discovered and explained their sandwich structure.

The versatility of metallocenes is due to their ability to “sandwich” many different elements to form a variety of compounds. They can be used in various applications, including the production of polymers, glucometers—used to measure the amount of glucose in the blood, perovskite , and as a catalyst, a substance that increases the rate of a chemical reaction without being consumed or changed by the reaction itself.

Scientists have been able to observe a common interaction in quantum chemistry for the first time, by using a quantum computer to shadow the process at a speed 100 billion times slower than normal.

Known as a conical intersection, the interactions have long been known about, but are usually over in mere femtoseconds – quadrillionths of a second – making direct observations impossible to carry out.

A research team from the University of Sydney in Australia and the University of California, San Diego, instead monitored the reaction using a charged particle trapped in a field, allowing them to follow a version of the process that dragged on for a relative eternity.

Generative AI is dominating the conversation in 2023, and the design community is no exception to its transformative potential. Product innovations fueled by emerging AI capabilities have the potential to unlock new opportunities and put the power of real-time intelligence in customers’ hands like never before.

As a design leader focused on creating innovative products and solutions for millions of our consumers and for thousands of our employees, I find AI’s potential particularly exciting for the design discipline. New technological advances like generative AI, computer vision, natural language processing and large language models can augment, complement and elevate the capabilities of designers, enabling them to focus on work that delivers maximum value to their users. At the same time, there are ongoing and important conversations about designing and implementing new safeguards and frameworks to mitigate risk and ensure the responsible application of AI.

Let’s take a closer look at the dynamic intersection of AI and design, focusing on how AI-enhanced design tools can enhance designer workflows, improve outputs and fuel product innovation.

The existence of an oxygen bottleneck has significant implications for future searches of technological activities on exoplanets.


Astrobiologists theorise that low-oxygen planets would be unlikely to produce advanced civilisations, as the discovery of fire requires easy access to open air combustion, which is only possible when oxygen partial pressure is above 18%.

When the Earth formed around 4.6 billion years ago, its atmosphere consisted mostly of carbon dioxide, methane, ammonia, and water vapour – with a lack of free oxygen making it totally inhospitable for aerobic life.

Dr Michael Russel’s lecture at the Molecular Frontiers Symposium at the Royal Swedish Academy of Sciences in Stockholm, Sweden, May 2011. The topic of the symposium was “Origin of Life and Molecular Evolution”. Check our YouTube channel for more exciting science videos! For more information, visit www.molecularfrontiers.org.

Help us caption & translate this video!

http://amara.org/v/FC4z/

Metastasis is one of the main obstacles in treating cancer. Studying circulating tumor cells (CTCs) and CTC clusters at the single-cell level can help us understand the underlying mechanisms and develop better therapeutic strategies for patients. Automated solutions can vastly simplify protocols for CTC isolation for molecular characterization at the single-cell level.

What are circulating tumor cells?

CTCs are cells that break away from the primary tumor and enter the bloodstream. Once in the blood, CTCs can adapt to the microenvironment of additional sites, forming a new tumor. This process, called metastasis, is responsible for over 90% of cancer-related deaths and is an active area of research.

A study led by researchers at the UCLA Jonsson Comprehensive Cancer Center sheds new light on why tumors that have spread to the brain from other parts of the body respond to immunotherapy while glioblastoma, an aggressive cancer that originates in the brain, does not.

In people with tumors that originated in other parts of the body but spread to the , treatment with a type of immunotherapy called appears to elicit a significant increase in both active and exhausted T cells—signs that the T cells have been triggered to fight the cancer. The reason the same thing doesn’t occur in people with glioblastoma is that anti-tumor immune responses are best initiated in draining lymph nodes outside of the brain, and that process does not occur very effectively in glioblastoma cases.

To date, immunotherapy has not been effective in treating glioblastoma, but it has been shown to slow or even eradicate other types of cancer, such as melanoma, which frequently metastasizes to the brain.

Using a standardized assessment, researchers in the UK compared the performance of a commercially available artificial intelligence (AI) algorithm with human readers of screening mammograms. Results of their findings were published in Radiology.

Mammographic does not detect every . False-positive interpretations can result in women without cancer undergoing unnecessary imaging and biopsy. To improve the sensitivity and specificity of screening mammography, one solution is to have two readers interpret every mammogram.

According to the researchers, double reading increases cancer detection rates by 6 to 15% and keeps recall rates low. However, this strategy is labor-intensive and difficult to achieve during reader shortages.

Cancer is a deadly disease with multiple risk factors. Risk factors are dependent on the type of cancer and each one is treated differently. The heterogeneity of various cancers is the main reason there is no cure. Additionally, cancer evolves and can also come back after being treated and lying dormant for years. Therefore, it is very difficult to find an effective treatment that provides high quality of life for patients.

One aggressive cancer that is difficult to treat includes glioblastoma. This brain tumor is fast-growing and results in the form of many different symptoms including headache, vomiting, and seizures. Unfortunately, there is not much known on glioblastoma. The cause of this disease is unclear and treatment options are limited. This tumor stays in the brain and does not metastasize, but because of its location, glioblastoma is hard to treat. Currently, treatment options include radiation, chemotherapy, and surgery with limited success. Even immunotherapy, a more recent treatment, which activates the body’s immune system to kill the tumor has limited efficacy in the brain.

A group of researchers led by Dr. Robert Prins at the David Geffen School of Medicine at University of California Los Angeles (UCLA) recently published an article in the Journal of Clinical Investigation (JCI) describing new research that could help overcome obstacles to glioblastoma treatment. More specifically, Prins and colleagues have reported why glioblastoma that originates from other parts of the body respond better to immunotherapy compared to glioblastoma that originates in the brain.