Toggle light / dark theme

Forward-looking: While AI has been at the forefront of most tech industry conversations this year, the new wave of generative AI is still far off the concept of an artificial general intelligence (AGI). However, legendary developer John Carmack believes such a technology will be shown off sometime around 2030.

Carmack, of course, is best known as the co-founder of id Software and lead programmer of Wolfenstein 3D, Doom, and Quake. He left Oculus in December last year to focus on Keen Technologies, his new AGI startup.

In an announcement video (via The Reg) revealing that Keen has hired Richard Sutton, chief scientific advisor at the Alberta Machine Intelligence Institute, Carmack said the new hire was ideally positioned to work on AGI.

A new CRISPR-based gene-editing tool has been developed which could lead to better treatments for patients with genetic disorders. The tool is an enzyme, AsCas12f, which has been modified to offer the same effectiveness but at one-third the size of the Cas9 enzyme commonly used for gene editing. The compact size means that more of it can be packed into carrier viruses and delivered into living cells, making it more efficient.

Researchers created a library of possible AsCas12f mutations and then combined selected ones to engineer an AsCas12f with 10 times more editing ability than the original unmutated type. This engineered AsCas12f has already been successfully tested in mice and has the potential to be used for new, more effective treatments for patients in the future.

By now you have probably heard of CRISPR, the gene-editing tool which enables researchers to replace and alter segments of DNA. Like genetic tailors, scientists have been experimenting with “snipping away” the genes that make mosquitoes malaria carriers, altering food crops to be more nutritious and delicious, and in recent years begun to overcome some of the most challenging diseases and genetic disorders.

Scientists at the University of Washington have developed flying robots that change shape in mid-air, all without batteries, as originally published in the research journal Science Robotics. These miniature Transformers snap into a folded position during flight to stabilize descent. They weigh just 400 milligrams and feature an on-board battery-free actuator complete with a solar power-harvesting circuit.

Here’s how they work. These robots actually mimic the flight of different leaf types in mid-air once they’re dropped from a drone at an approximate height of 130 feet. The origami-inspired design allows them to transform quickly from an unfolded to a folded state, a process that takes just 25 milliseconds. This transformation allows for different descent trajectories, with the unfolded position floating around on the breeze and the folded one falling more directly. Small robots are nothing new, but this is the first solar-powered microflier that allows for control over the descent, thanks to an onboard pressure sensor to estimate altitude, an onboard timer and a simple Bluetooth receiver.

Stem cells from the human stomach can be converted into cells that secrete insulin in response to rising blood sugar levels, offering a promising approach to treating diabetes, according to a preclinical study from researchers at Weill Cornell Medicine.

In the study, which appeared April 27 in Nature Cell Biology, the researchers showed that they could take stem cells obtained from human stomach tissue and reprogram them directly—with strikingly high efficiency—into cells that closely resemble pancreatic insulin-secreting cells known as beta cells. Transplants of small groups of these cells reversed disease signs in a mouse model of diabetes.

“This is a proof-of-concept study that gives us a solid foundation for developing a treatment, based on patients’ own cells, for type 1 diabetes and severe type 2 diabetes,” said study senior author Dr. Joe Zhou, an associate professor of regenerative medicine and a member of the Hartman Institute for Therapeutic Organ Regeneration at Weill Cornell Medicine.

Ageing has always been inevitable but fasting, epigenetic reprogramming and parabiosis are just some of the scientific techniques that seem to help people stay young. Might the Peter Pan dream become real?

00:00 — Can science turn back the clock?
01:01 — Centenarians.
02:51 — What is ageing?
04:51 — Dietary restriction.
06:00 — Roundworms.
07:55 — Epigenetics.
09:43 — Blood and guts.
11:40 — Senolytics.
12:38 — Metformin.
13:51 — Anti-ageing treatments are coming.

Sign up to The Economist’s daily newsletter: https://econ.st/3QAawvI

Read the Technology Quarterly on longevity: https://econ.st/462fqto.

September is Thyroid Cancer Awareness Month, which makes this a good time to learn about treating thyroid cancer.

Nearly 44,000 new cases of thyroid cancer will be diagnosed in the U.S. this year, and more than 2,000 people will die of the disease, according to the American Cancer Society.

Thyroid cancer occurs in the cells of the thyroid, a butterfly-shaped gland at the base of your neck. Your thyroid produces hormones that regulate your heart rate, blood pressure, body temperature and weight.

CAPE CANAVERAL, Fla. (WFLA) — SpaceX will attempt to launch 22 Starlink satellites from Florida on Friday evening, but weather threatens to postpone the launch.

According to the SpaceX website, the company plans to send up its Falcon 9 rocket from Cape Canaveral Space Force Station at 10 p.m.

The latest forecast from the 45th Weather Squadron at Patrick Space Force Base indicates the launch has an 80% chance of being scrubbed or delayed due to weather. If that happens, SpaceX has three backup opportunities available until 10:15 p.m., but conditions are only expected to be slightly more favorable.