Toggle light / dark theme

Time to link up or shut up.


Sept 19 (Reuters) — Billionaire entrepreneur Elon Musk’s brain-chip startup Neuralink said on Tuesday it has received approval from an independent review board to begin recruitment for the first human trial of its brain implant for paralysis patients.

Those with paralysis due to cervical spinal cord injury or amyotrophic lateral sclerosis may qualify for the study, it said, but did not reveal how many participants would be enrolled in the trial, which will take about six years to complete.

The study will use a robot to surgically place a brain-computer interface (BCI) implant in a region of the brain that controls the intention to move, Neuralink said, adding that its initial goal is to enable people to control a computer cursor or keyboard using their thoughts alone.

Scientists from the University of Texas at Dallas have identified a previously unknown “housekeeping” process in kidney cells that ejects unwanted content, resulting in cells that rejuvenate themselves and remain functioning and healthy.

This unique self-renewal method, distinct from known regeneration processes in other body tissues, sheds light on how the kidneys can maintain their health throughout one’s life in the absence of injury or illness. The team detailed their findings in a study recently published in Nature Nanotechnology.

Unlike the liver and skin, where cells divide to create new daughter cells and regenerate the organ, cells in the proximal tubules of the kidney are mitotically quiescent — they do not divide to create new cells. In cases of a mild injury or disease, kidney cells do have limited repair capabilities, and stem cells in the kidney can form new kidney cells, but only up to a point, said Dr. Jie Zheng, professor of chemistry and biochemistry in the School of Natural Sciences and Mathematics and co-corresponding author of the study.

With future observations and as more time passes — both from new data and from data that’s still being analyzed and prepared by this collaboration — we may obtain the most precise and accurate measurement for the expansion rate of the Universe using the cosmic distance ladder method of all-time.

This triply-imaged supernova was not named “Supernova H0pe” in vain, as it really does give us hope that the answer to today’s greatest cosmic puzzle may indeed be written on the face of the Universe. With JWST going strong, we may have already found the galaxy cluster, and the gravitationally lensed system, that will resolve what’s been puzzling astronomers for the entirety of the 21st century.

A Texas A&M University professor and a team of pharmacology researchers are spearheading advances in the use of medical cannabinoids for epilepsy and seizure disorders.

A team led by Dr. D. Samba Reddy, a Regents Professor in the Department of Neuroscience and Experimental Therapeutics at the Texas A&M University School of Medicine, has made progress in determining efficacy, safety and new applications of cannabinoid therapeutics. Reddy’s work establishes a foundation for tailored and effective epilepsy treatments, offering hope to those facing its challenges.

The team’s research on epilepsy has resulted in the publication of five key papers featured in the May 2023 issue of the journal Experimental Neurology.

“The medical cannabis research originated from the patient families and advocates in Colorado who have witnessed the positive effects of medical cannabis products,” said Reddy, who is a founding director of the Texas A&M Health Institute of Pharmacology and Neurotherapeutics.


Microglial cells are the maintenance workers of the central nervous system (CNS), protecting against pathogens and pruning damaged neurons to help the brain maintain homeostasis. Considered immune cells, microglia work to protect the brain from before it is fully formed through its lifetime, but they aren’t infallible. The cells can be primed early on to respond in certain ways, making the microglia’s clean-up efforts less efficient. As other cells age, they can complicate microglial function, making them less effective.

But the underlying mechanism of how age and how their aging directly affects the brain is poorly understood—meaning that attempts to prevent or treat brain dysfunction may not be as effective as they could be, according to a multi-institutional collaboration led by Bo Peng and Yanxia Rao, both professors at Fudan University.

The team investigated how microglial cells change as they age in both male and female mice across their lifespans, finding what the researchers called “unexpected sex differences.” They also established a model to study aged microglial cells in a non-aged brain, revealing that aged-like contribute to even in young mice. The researchers published their findings in Nature Aging.