Toggle light / dark theme

Computer scientist Brent Seales and a team of researchers at the University of Kentucky are working to “digitally unwrap” ancient papyri from the Herculaneum library that were carbonized by the eruption of Mount Vesuvius in 79 CE.

Read about it here:


Since 2019, NEH has supported work by computer scientist Brent Seales and a team of researchers at the University of Kentucky in efforts to “digitally unwrap” ancient papyri from the Herculaneum library that were carbonized by the eruption of Mount Vesuvius in 79 A.D.

These fragile coal-like scrolls have been completely unreadable for more than two centuries, but NEH funding has helped researchers refine computerized techniques to digitally unroll X-rayed layers of the compacted papyri to try to discern and decipher their carbon-based ink writings.

In a new study, Abudayyeh and Gootenberg led a team of scientists on a quest to identify and characterize Fanzor enyzmes in large-scale genetic databases. Their genetic mining venture, published in Science Advances, outlines the discovery of over 3,600 Fanzors in eukaryotes, including algae, snails, amoebas and the viruses that infect them.

Fanzors evolved new features to survive and thrive in eukaryotes

Five distinct families of Fanzors could be identified from the study data. By comparing the biological makeup of these families, Abudayyeh and colleagues could track their evolutionary history. Fanzors most likely evolved from proteins called TnpB, which are encoded in transposons – mobile genetic elements often nicknamed “jumping genes”. In Nature, the McGovern team hypothesized that the TnpB gene may have “jumped” from bacteria to eukaryotes in a genetic “shuffling” many years ago. Abudayyeh and Gootenburg’s new study and genetic tracing implies that this event likely occurred several times, with Fanzors “jumping” from viruses and symbiotic bacteria. Their analyses also suggest that once these genes had made their way into eukaryotes, they evolved new features that promoted their survival, including the ability to enter a cell’s nucleus and access its DNA.

Are humans progressing morally as well as materially? What does it mean to be human in the cosmos? On a new episode of ID the Future, we bring you the second half of a stimulating conversation between Dr. David Berlinski and host Eric Metaxas on the subject of Berlinski’s book Human Nature.

In Human Nature, Berlinski argues that the utopian view that humans are progressing toward evolutionary and technological perfection is wishful thinking. Men are not about to become like gods. “I’m a strong believer in original sin,” quips Berlinski in his discussion with Metaxas. In other words, he believes not only that humans are fundamentally distinct from the rest of the biological world, but also that humans are prone to ignorance and depravity as well as wisdom and nobility. During this second half of their discussion, Berlinski and Metaxas compare and contrast the ideas of thinkers like psychologist Steven Pinker, author Christopher Hitchens, and physicist Steven Weinberg. The pair also spar gracefully over the implications of human uniqueness. Berlinski, though candid and self-critical, is unwilling to be pigeonholed. Metaxas, drawing his own conclusions about the role of mind in the universe, challenges Berlinski into moments of clarity with his usual charm. The result is an honest, probing, and wide-ranging conversation about the nature of science and the human condition. Download the podcast or listen to it here.

This is Part 2 of a two-part interview. If you missed it, listen to Part 1.

The new book Minding the Brain from Discovery Institute Press is an anthology of 25 renowned philosophers, scientists, and mathematicians who seek to address that question. Materialism shouldn’t be the only option for how we think about ourselves or the universe at large. Contributor Angus Menuge, a philosopher from Concordia University Wisconsin, writes.

Neuroscience in particular has implicitly dualist commitments, because the correlation of brain states with mental states would be a waste of time if we did not have independent evidence that these mental states existed. It would make no sense, for example, to investigate the neural correlates of pain if we did not have independent evidence of the existence of pain from the subjective experience of what it is like to be in pain. This evidence, though, is not scientific evidence: it depends on introspection (the self becomes aware of its own thoughts and experiences), which again assumes the existence of mental subjects. Further, Richard Swinburne has argued that scientific attempts to show that mental states are epiphenomenal are self-refuting, since they require that mental states reliably cause our reports of being in those states. The idea, therefore, that science has somehow shown the irrelevance of the mind to explaining behavior is seriously confused.

The AI optimists can’t get away from the problem of consciousness. Nor can they ignore the unique capacity of human beings to reflect back on themselves and ask questions that are peripheral to their survival needs. Functions like that can’t be defined algorithmically or by a materialistic conception of the human person. To counter the idea that computers can be conscious, we must cultivate an understanding of what it means to be human. Then maybe all the technology humans create will find a more modest, realistic place in our lives.

Scientists have successfully gene-edited chickens to make them partially resistant to the bird flu and believe full immunity may be within reach.


Scientists from the University of Edinburgh’s Roslin Institute have successfully gene-edited chickens to make them partially resistant to the bird flu but experts argue that only full immunity can see the danger of the virus eradicated.

This is according to a report by BBC News published this week.

Influenza A viruses, which are responsible for causing bird flu, can be divided into many subtypes based on the surface proteins hemagglutinin (H) and neuraminidase (N). While certain bird flu subtypes are less dangerous, others are more virulent and capable of causing serious illness.

Join us as we delve into the fascinating world of collective intelligence, programmable biology, and the future of learning with renowned TED speaker and Harvard’s Wyss Institute Associate Faculty, Michael Levin. As the director of the Allen Discovery Center at Tufts University and co-director of the Institute for Computer-Designed Organisms, Levin stands at the forefront of biological research and innovation.

In this enlightening interview, we explore the potentials and pitfalls of rewriting our DNA to gain superhuman abilities – imagine being able to breathe underwater or see in infrared! We also address the nuances of academic publishing and the urgent need for more collaborative approaches within scientific disciplines.

This discussion is part of our ongoing series to understand and develop methodologies for collective and collaborative intelligence. The goal? To design more efficient and inclusive collaborative learning networks through our innovative methodology, Unify.

Tune in to learn more about the transformative power of biology, the future of academic collaboration, and the exciting potential of our Unify methodology. Whether you’re a biologist, an educator, a futurist, or simply curious about the potential of human biology, you won’t want to miss this interview.

I want to tell you about one thing that came up in our conversation: efforts to, in some way, monitor encrypted messages.

Policy proposals have been popping up around the world (like in Australia, India, and, most recently, the UK) that call for tech companies to build in ways to gain information about encrypted messages, including through back-door access. There have also been efforts to increase moderation and safety on encrypted messaging apps, like Signal and Telegram, to try to prevent the spread of abusive content, like child sexual abuse material, criminal networking, and drug trafficking.

Not surprisingly, advocates for encryption are generally opposed to these sorts of proposals as they weaken the level of user privacy that’s currently guaranteed by end-to-end encryption.