Toggle light / dark theme

A study conducted in Japan has found that individuals exhibiting strong autistic traits are often inclined towards dichotomous thinking. The research suggests that these autistic traits might lead to a heightened intolerance of uncertainty, subsequently increasing the propensity for dichotomous thinking. The study was published in Scientific Reports.

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by a wide range of symptoms and challenges. Individuals with autism spectrum disorder typically have restricted interests, difficulties in social interaction and communication. The severity of these challenges can vary greatly from person to person. Some individuals with ASD may have significant language delays and struggle with everyday social interactions, while others may have milder symptoms and excel in certain areas, such as mathematics or art.

Aside from atypical social functioning, autistic individuals tend to exhibit a thinking pattern known as dichotomous, “black-and-white”, or binary thinking. This is a form of cognitive distortion wherein an individual perceives things in a binary way – either black or white, good or bad. There is no middle zone or space for any nuances. The result of this thinking pattern is that the person oversimplifies very complex issues, leading often to inappropriate or obviously poor decisions.

Moungi G. Bawendi, Louis E. Brus and Alexei I. Ekimov are awarded the Nobel Prize in Chemistry 2023 for the discovery and development of quantum dots. These tiny particles have unique properties and now spread their light from television screens and LED lamps. They catalyse chemical reactions and their clear light can illuminate tumour tissue for a surgeon.

“Toto, I’ve a feeling we’re not in Kansas anymore,” is a classic quote from the film The Wizard of Oz. Twelve-year-old Dorothy faints onto her bed when her house is swept away by a powerful tornado, but when the house lands again and she steps outside the door, her dog Toto in her arms, everything has changed. Suddenly she is in a magical, technicolour world.

If an enchanted tornado were to sweep into our lives and shrink everything to nano dimensions, we would almost certainly be as astonished as Dorothy in the land of Oz. Our surroundings would be dazzlingly colourful and everything would change. Our gold earrings would suddenly glimmer in blue, while the gold ring on our finger would shine a ruby red. If we tried to fry something on the gas hob, the frying pan might melt. And our white walls – whose paint contains titanium dioxide – would start generating lots of reactive oxygen species.

Can artificial intelligence (AI) get hungry? Develop a taste for certain foods? Not yet, but a team of Penn State researchers is developing a novel electronic tongue that mimics how taste influences what we eat based on both needs and wants, providing a possible blueprint for AI that processes information more like a human being.

Human behavior is complex, a nebulous compromise and interaction between our physiological needs and psychological urges. While has made great strides in recent years, AI systems do not incorporate the psychological side of our human intelligence. For example, emotional intelligence is rarely considered as part of AI.

“The main focus of our work was how could we bring the emotional part of intelligence to AI,” said Saptarshi Das, associate professor of engineering science and mechanics at Penn State and corresponding author of the study published recently in Nature Communications.

The 2023 Nobel prize in physics has been awarded to a trio of scientists for pioneering tools used to study the world of electrons.

Electrons are sub-atomic particles that play a role in many phenomena we see every day, from electricity to magnetism. This year’s three Nobel physics laureates demonstrated a way to create extremely short pulses of light in order to investigate processes that involve electrons.

Pierre Agostini from The Ohio State University in the US, Ferenc Krausz from the Max Planck Institute of Quantum Optics in Germany and Anne L’Huillier from Lund University in Sweden will share the prize sum of 11 million Swedish kronor (£822,910).

This surreal scenario is what would actually happen if the traffic light was a single atom illuminated by a laser beam, as recently shown experimentally by researchers in Berlin. They looked at the light scattered by an atom and saw that photons—the tiniest particles of light—arrived at the detector one at a time. The scientists blocked the brightest color they saw, and suddenly pairs of photons of two slightly different colors started arriving at their detector simultaneously. They reported their findings in Nature Photonics in July.

The reason for this counterintuitive effect is that single atoms are skilled little multitaskers. Through different underlying processes, they can scatter a variety of colors at the same time like a dangerous traffic light that shines all three colors at once. Yet because of quantum interference between these processes, an observer only sees one of the metaphorical traffic light’s colors at a time, preserving peace on the road.

This experiment also paves the way for novel quantum information applications. When the brightest color is blocked, the photons that pop up simultaneously are entangled with each other, behaving in sync even when they are separated over large distances. This provides a new tool for quantum communication and information processing in which entangled photon pairs can serve as distributed keys in quantum cryptography or store information in a quantum memory device.

The good news is, so far, no exploits appear to have been released for the latest vulnerabilities, says Dustin Childs, head of threat awareness for Trend Micro’s Zero Day Initiative.

“We have no indication regarding the potential exploitability of these bugs,” he says. “We are not aware of any active exploits using these bugs.”

Exim is the most popular mail transfer agent on the Internet, accounting for 59% — or 253,000 — of identifiable mail servers on the Internet, according to a March 1 scan of MX servers. Postfix, another open source mail transfer agent, is the second most popular, with 149,000 detectable installations.