Toggle light / dark theme

FGFR inhibitors, in combination with standard treatments, have extended the lives of many with this disease. However, these drugs often stop working after six to eight months.

“These drugs work very well for a while, but resistance is inevitable,” says gastrointestinal medical oncologist Milind Javle, M.D.

Now, a new type of FGFR inhibitor may allow patients to live longer without their disease progressing.

Data that needs to be stored long-term is growing exponentially. Existing storage technologies have a limited lifetime, and regular data migration is needed, resulting in high cost. Project Silica designs a long-term storage system specifically for the cloud, using quartz glass.

Read the blog at https://aka.ms/AA6faho.
Learn more about the project at https://www.microsoft.com/en-us/research/video/project-silic…-in-glass/

The number of publications in artificial intelligence (AI) has been increasing exponentially and staying on top of progress in the field is a challenging task. Krenn and colleagues model the evolution of the growing AI literature as a semantic network and use it to benchmark several machine learning methods that can predict promising research directions in AI.

Intelligent robots are reshaping our universe. In New Jersey’s Robert Wood Johnson University Hospital, AI-assisted robots are bringing a new level of security to doctors and patients by scanning every inch of the premises for harmful bacteria and viruses and disinfecting them with precise doses of germicidal ultraviolet light.

In agriculture, robotic arms driven by drones scan varying types of fruits and vegetables and determine when they are perfectly ripe for picking.

The Airspace Intelligence System AI Flyways takes over the challenging and often stressful tasks of flight dispatchers who must make last-minute flight pattern changes due to sudden extreme weather, depleted fuel supplies, mechanical problems or other emergencies. It optimizes solutions, is safer, saves time and is cost-efficient.

Researchers at EPFL and Northwestern University have unveiled a groundbreaking design for perovskite solar cells, creating one of the most stable PSCs with a power-conversion efficiency above 25%, paving the way for future commercialization.

Perovskite (PSCs) stand at the forefront of solar energy innovation, and have drawn a lot of attention for their power-conversion efficiency and cost-effective manufacturing. But the way to commercialization of PSCs still has a hurdle to overcome: achieving both and long-term , especially in challenging environmental conditions.

The solution lies in the interplay between the layers of PSCs, which has proven to be a double-edged sword. The layers can enhance the cells’ performance but also cause them to degrade too quickly for regular use in everyday life.

The neutrino, one of nature’s most elusive and least understood subatomic particles, rarely interacts with matter. That makes precision studies of the neutrino and its antimatter partner, the antineutrino, a challenge. The strongest emitters of neutrinos on Earth—nuclear reactors—play a key role in studying these particles. Researchers have designed the Precision Reactor Oscillation and Spectrum Experiment (PROSPECT) for detailed studies of electron antineutrinos coming from the core of the High Flux Isotope Reactor (HFIR).

Now the PROSPECT research collaboration has reported the most precise measurement ever of the energy spectrum of antineutrinos emitted from the fission of uranium-235 (U-235). These results provide scientists with new information about the nature of these particles.

PROSPECT’s collaborators represent more than 60 participants from 13 universities and four national laboratories. They built a novel detector system and installed it with extensive, tailored shielding against background at the HFIR research , a Department of Energy (DOE) Office of Science user facility at Oak Ridge National Laboratory. The research focuses on antineutrinos emerging from the fission of U-235. Produced by nuclear beta decay, antineutrinos are antimatter-particle counterparts to neutrinos.

The astrophysicists, from Trinity and the Breakthrough Listen team and Onsala Space Observatory in Sweden, are scanning the universe for “technosignatures” emanating from distant planets that would provide support for the existence of intelligent, alien life.

Using the Irish LOFAR telescope and its counterpart in Onsala, Sweden, the team—led by Professor Evan Keane, Associate Professor of Radio Astronomy in Trinity’s School of Physics, and Head of the Irish LOFAR Telescope—plans to monitor millions of star systems.

Scientists have been searching for extraterrestrial radio signals for well over 60 years. Many of these have been carried out using single observatories which limits the ability to identify signals from the haze of terrestrial interference on Earth. Much of the effort has focused on frequencies above 1 GHz because the single-dish telescopes employed operate at these frequencies.

Researchers integrate terahertz vortex beam emission to advance radar target detection technology.

You may not realize it, but the Doppler effect is everywhere in our lives, from tracking the speed of cars with radar to locating satellites in the sky. It’s all about how waves change their frequency when a source (like a radar signal) and a detector are in motion relative to each other. However, traditional radar systems hit a roadblock when trying to detect objects moving at right angles to their radar signals. This limitation has driven researchers to explore an entirely new approach.

Introduction to Vortex Radar.

The results of a human study carried out by an international research team have provided valuable new insights into the activity of the brain’s noradrenaline (NA) system, which has been a longtime target for medications to treat attention-deficit/hyperactivity disorder, depression, and anxiety. The study employed what the researchers claim is a groundbreaking methodology, developed to record real-time chemical activity from standard clinical electrodes implanted into the brain routinely for epilepsy monitoring.

The results offer up new insights into brain chemistry, which could have implications for a wide array of medical conditions, and also demonstrate use of the new strategy for acquiring data from the living human brain.

“Our group is describing the first ‘fast’ neurochemistry recorded by voltammetry from conscious humans,” said Read Montague, PhD, the VTC Vernon Mountcastle research professor at Virginia Tech, and director of the Center for Human Neuroscience Research and the Human Neuroimaging Laboratory of the Fralin Biomedical Research Institute at VTC. “This is a big step forward and the methodological approach was implemented completely in humans – after more than 11 years of extensive development.” Montague is senior, and co-corresponding author of the researchers’ published paper in Current Biology, which is titled “Noradrenaline tracks emotional modulation of attention in human amygdala.” In their paper the authors concluded, “By showing that neuromodulator estimates can be obtained from depth electrodes already in standard clinical use in the conscious human brain, our study opens the door to a new area of research on the neuromodulatory basis of human health and disease.”