Toggle light / dark theme

For the first time, researchers transformed light into a quantum crystalline structure to create a “supersolid” that’s both solid and liquid at the same time. Here’s what that means, and why it’s such a big step forward.

Scientists have tapped into the Summit supercomputer to study an elaborate molecular pathway called nucleotide excision repair (NER). This research reveals how damaged strands of DNA are repaired through this molecular pathway, nucleotide excision repair.

NER’s protein components can change shape to perform different functions of repair on broken strands of DNA.

A team of scientists from Georgia State University built a computer model of a critical NER component called the pre-incision complex (PInC) that plays a key role in regulating DNA repair processes in the latter stages of the NER pathway.

The battle for artificial intelligence supremacy hinges on microchips. But the semiconductor sector that produces them has a dirty secret: It’s a major source of chemicals linked to cancer and other health problems.

Global chip sales surged more than 19% to roughly $628 billion last year, according to the Semiconductor Industry Association, which forecasts double-digit growth again in 2025. That’s adding urgency to reducing the impacts of so-called “forever chemicals” — which are also used to make firefighting foam, nonstick pans, raincoats and other everyday items — as are regulators in the U.S. and Europe who are beginning to enforce pollution limits for municipal water supplies. In response to this growing demand, a wave of startups are offering potential solutions that won’t cut the chemicals out of the supply chain but can destroy them.

Per-and polyfluoroalkyl substances, or PFAS, have been detected in every corner of the planet from rainwater in the Himalayas to whales off the Faroe Islands and in the blood of almost every human tested. Known as forever chemicals because the properties that make them so useful also make them persistent in the environment, scientists have increasingly linked PFAS to health issues including obesity, infertility and cancer.

One belief underlying the power-hungry approach to machine learning advanced by OpenAI and Mistral AI is that an artificial intelligence model must review its entire dataset before spitting out new insights.

Sepp Hochreiter, an early pioneer of the technology who runs an AI lab at Johannes Kepler University in Linz, Austria, has a different view, one that requires far less cash and computing power. He’s interested in teaching AI models how to efficiently forget.

Hochreiter holds a special place in the world of artificial intelligence, having scaled the technology’s highest peaks long before most computer scientists. As a university student in Munich during the 1990s, he came up with the conceptual framework that underpinned the first generation of nimble AI models used by Alphabet, Apple and Amazon.