Toggle light / dark theme

👉For business inquiries: [email protected].
✅ Instagram: https://www.instagram.com/pro_robots.

In the quest to overcome the limitations of the human body and mind, scientists worldwide are diligently working on various technologies. The question arises: What will human beings become after undergoing numerous enhancements? Will we retain our identity while embracing the possibilities offered by artificial intelligence? What extraordinary capabilities will biotechnology bestow upon us? And how will our emotions and desires evolve as our bodies undergo transformation?

Join us on a captivating journey to the year 2050, as we delve into the frontiers of scientific research, consult with visionary futurists, and examine the predictions of brilliant minds. Together, we will explore the profound changes that lie ahead!

00.00 — Introduction.

The central question in the ongoing hunt for dark matter is: what is it made of? One possible answer is that dark matter consists of particles known as axions. A team of astrophysicists, led by researchers from the universities of Amsterdam and Princeton, has now shown that if dark matter consists of axions, it may reveal itself in the form of a subtle additional glow coming from pulsating stars. Their work is published in the journal Physical Review Letters.

Dark matter may be the most sought-for constituent of our universe. Surprisingly, this mysterious form of matter, that physicist and astronomers so far have not been able to detect, is assumed to make up an enormous part of what is out there.

No less than 85% of matter in the universe is suspected to be “dark,” presently only noticeable through the gravitational pull it exerts on other astronomical objects. Understandably, scientists want more. They want to really see dark matter—or at the very least, detect its presence directly, not just infer it from gravitational effects. And, of course: they want to know what it is.

Japanese scientist Kikunae Ikeda first proposed umami as a basic taste—in addition to sweet, sour, salty and bitter—in the early 1900s. About eight decades later, the scientific community officially agreed with him.

Now, scientists led by researchers at the USC Dornsife College of Letters, Arts and Sciences have evidence of a sixth basic .

In research published in Nature Communications, USC Dornsife neuroscientist Emily Liman and her team found that the tongue responds to through the same that signals sour taste.

An international team of researchers has developed a new theoretical framework that bridges physics and biology to provide a unified approach for understanding how complexity and evolution emerge in nature.

This new work on “assembly ,” published today in Nature, represents a major advance in our fundamental comprehension of biological evolution and how it is governed by the physical laws of the universe. The paper is titled “Assembly Theory Explains and Quantifies Selection and Evolution.”

This research builds on the team’s previous work developing assembly theory as an empirically validated approach to life detection, with implications for the search for and efforts to evolve new life forms in the laboratory.

Artificial intelligence is changing health care. It promises better diagnoses and fewer mistakes and all in less time. While some associate AI with a frightening dystopian future, many doctors see it as a source of support.

To help them care for patients, doctors are programming apps and supplying AI with data. At Berlin’s CharitĂ© hospital, Professor Surjo Soekadar is researching how neurotechnology might support paralysis patients in their everyday lives — for example, via assistance systems that are controlled via their thoughts.

This could offer hope to people like Guido Schule and Anne Nitzer had a stroke shortly after the birth of her second child and has been unable to move or speak since then — even though she is fully conscious.

At Vienna General Hospital (AKH) Professor Ursula Schmidt-Erfurth has already developed an AI-based diagnostic tool that has been licensed for use. Nowadays, she is researching how AI could improve both the diagnosis and the treatment of age-related macular degeneration (AMD). This chronic eye disease can lead to loss of vision — even with treatment. This is a fate that Oskar Zlamala could face. But since the retiree began treatment at the AKH Vienna, he is hoping that it might be possible to halt the progression of his illness.

This is a sci-fi documentary, looking at the 100 years it will take a nuclear fusion spacecraft to travel to Proxima Centauri b. The closest habitable planet to Earth, with a distance of 4.24 light years.

A journey venturing far beyond Earth’s solar system, showing the future science of space travel, exploration, and future space technology.

Personal inspiration in creating this video comes from: the movie Interstellar, The Expanse TV show, and Carl Sagan’s Cosmos TV show.

Other topics in the video include: the population growth over the 100 year timelapse journey to Proxima Centauri b, how bacteria evolves in a closed loop system, the design of the spaceship habitat ring, the rotations per minute needed to generate 1-g of artificial gravity, the conservation of angular momentum in space, the living conditions on Proxima Centauri b (the higher gravity, and the red light), and time dilation is explained (how many extra days will pass on Earth when the spaceship arrives at the destination planet – just like the movie Interstellar).