Toggle light / dark theme

Lawrence Livermore National Laboratory researchers have adapted their novel metasurface process to create an all-glass metasurface with birefringence, or dual refraction, properties. Learn how this achievement could transform waveplate technology for high-power laser systems such as the National Ignition Facility:


We support diverse research activities with talented staff, state-of-the-art facilities and core competencies. From internal collaboration to external partnerships, we work together to advance scientific discovery.

This week saw the release of a treasure trove of data from the European Space Agency’s (ESA) Gaia mission, a space-based observatory that is mapping out the Milky Way in three dimensions. The newly released data includes half a million new stars and details about more than 150,000 asteroids within our solar system.

The overall aim of the Gaia mission is to create a full 3D map of our galaxy that includes not only stars, but also other objects like planets, comets, asteroids, and more. The mission was launched in 2013 and the data it collected is released in batches every few years, with previous releases including data on topics like the positions of over 1.8 billion stars.

The new data release fills in some gaps from previous releases, particularly in areas of the sky that are densely packed with stars — such as the Omega Centauri globular cluster, shown above. The new view of this cluster shows 10 times as many stars as the previous data, with a total of 526,587 new stars identified.

Eclipses can be more than just emotionally stirring. Solar eclipses, when they happen, create waves of disturbances across electrically charged particles in the Earth’s ionosphere—a layer of the upper atmosphere that plays an important role in radio frequency communications. Here, the heated and charged ions and electrons swirl around in a soup of plasma that envelops the planet.

To understand the effect that eclipses have on this plasma, scientists from NASA are planning to shoot a series of 60-feet-tall rockets up to collect information at the source.

The ionosphere sits between 60–300 kilometers above the Earth’s surface, which is roughly 37–190 miles up. “The only way to study between 50 kilometers and 300 kilometers in situ is through rockets,” says Aroh Barjatya, director of the Space and Atmospheric Instrumentation Lab and principal investigator on the upcoming NASA sounding rocket mission, which is called Atmospheric Perturbations around the Eclipse Path. By in situ, he means quite literally in the thick of it.

A team of atmospheric scientists, chemists and infectious disease specialists at the Max Planck Institute for Chemistry, working with colleagues from the Max Planck Institute for Dynamical Systems, the University of Denver, Georg August University and St. Petersburg State University, has embarked on an effort to collate publicly available information on droplet properties, such as the way they are distributed by size, their composition, and the ways they are emitted, as a means of helping to develop mitigation strategies for fighting infectious agents.

In their paper published in the journal Reviews of Modern Physics, the group describes their collating process and why they believe it could help fight non-contact .

In the early days of the pandemic, as people around the world locked themselves inside their residences, scientists, including those not in the , looked for ways to help. One such pair of researchers, Christopher Pöhlker, an atmospheric scientist, and his wife, Mira, a cloud scientist, began to wonder about the nature of droplet size—something related to both their fields of work.

A fully automated process, including a brand-new artificial intelligence (AI) tool, has successfully detected, identified and classified its first supernova.

Developed by an led by Northwestern University, the new system automates the entire search for new supernovae across the night sky—effectively removing humans from the process. Not only does this rapidly accelerate the process of analyzing and classifying new supernova candidates, it also bypasses .

The team alerted the astronomical community to the launch and success of the new tool, called the Bright Transient Survey Bot (BTSbot), this week. In the past six years, humans have spent an estimated total of 2,200 hours visually inspecting and classifying supernova candidates. With the new tool now officially online, researchers can redirect this precious time toward other responsibilities in order to accelerate the pace of discovery.

Global warming has severely impacted the supply of fresh water in many parts of the world. Coastal communities have resorted to salination plants while those in the far interior have no option but to extract water from the air. Most of these techniques are energy-intensive or only work under certain conditions. Now, a new technology developed by researchers at ETH Zurich can help humanity access fresh water 24 hours a day and without spending any energy.

The technology might not look so sophisticated at first, and one might just say that it’s just another regular glass pane. But only the researchers who developed it will tell you that this glass pane is coated with special polymers and silver layers that give the glass properties to reflect solar radiation and also emit heat directly into outer space.