Toggle light / dark theme

Charging an electric vehicle can be daunting sometimes, but Tesla, the biggest player in the game, has long figured it out. Thanks to its extensive Supercharger network of DC fast chargers that are tightly integrated with the cars’ software, it’s extremely easy to plan a route in a Tesla EV.

The infotainment system shows the driver exactly how many charging stops are needed, how much juice will be in the battery when arriving at a charging stop and how much energy will be added during the charging stop. It’s all seamless, and it’s one of the biggest reasons why people buy Teslas to begin with.

However, during the holidays, even Tesla owners might have to wait a little longer during charging stops simply because all the stalls are already in use when arriving at a Supercharger. More people are traveling, so more EV owners are out there charging their cars. However, Tesla seems to have a solution for this, as well.

Researchers in Japan made a groundbreaking discovery that could bring us closer to sustainable energy from nuclear fusion reactors, paving the way for longer-lasting, more efficient clean energy systems.

In a recent study, the team developed protective coatings to enhance the durability of materials used in fusion reactors, addressing a key challenge: material degradation from extreme heat and corrosive liquid metal coolants.

Fusion reactors, which mimic the sun’s energy production process, hold huge potential as a limitless source of clean energy. However, their intense environment makes it difficult to find materials that can endure prolonged exposure to high temperatures and corrosive coolants like lithium-lead alloy.

Your body is one of the most complex natural structures ever. Billions of cells are put together in a specific way with the result being you. If you look closely between the cells you’ll find the extracellular matrix, a gel-like environment where cells reside and which helps them to talk to each other. However, when disease strikes, cells and the matrix alike can be irreparably damaged, which could lead to the loss of cell function.

In her Ph. D. research, Maritza Rovers looked at ways to make microgel-based scaffolds for cells, which could be used to support eye cells or even promote nerve growth in spinal cord injuries.

Every person on the planet is made up of billions of cells, which are the building blocks of our bodies. Between these cells lies the so-called (ECM), a gel-like environment in which cells live out their lives.

A rare genetic variant, APOE3 Christchurch, delays Alzheimer’s onset by years in high-risk individuals, offering insights into disease resilience. This discovery could guide new treatments targeting similar protective pathways for Alzheimer’s prevention and therapy.