Toggle light / dark theme

Year 2021 face_with_colon_three


Senescent cells accumulate in organs during aging, promote tissue dysfunction, and cause numerous aging-related diseases like cancer. The cells arise through a process called “cellular senescence,” a permanent cell cycle arrest resulting from multiple stresses.

A collaborative research group led by Professor Makoto Nakanishi of the Institute of Medical Science, The University of Tokyo (IMSUT), and co-researchers have identified an inhibitor of the glutamate metabolic enzyme GLS1so that its administration selectively eliminates senescent cells in vivo.

They confirmed that the GLS1 inhibitor eliminated senescent cells from various organs and tissues in aged mice, ameliorating age-associated tissue dysfunction and the symptoms of obese diabetes, arteriosclerosis, and NASH. The results of this research were published in “Science” on January 15, 2021.

Sean Carroll speaking at the 6th International FQXi Conference, “Mind Matters: Intelligence and Agency in the Physical World.”

The Foundational Questions Institute (FQXi) catalyzes, supports, and disseminates research on questions at the foundations of physics and cosmology, particularly new frontiers and innovative ideas integral to a deep understanding of reality but unlikely to be supported by conventional funding sources.

Please join us at www.fqxi.org!

On July 12, 2023, a new research paper was published in Aging, titled, “Chemically induced reprogramming to reverse cellular aging.”

BUFFALO, NY– July 12, 2023 – In a groundbreaking study, researchers have unlocked a new frontier in the fight against aging and age-related diseases. The study, conducted by a team of scientists at Harvard Medical School, has published the first chemical approach to reprogram cells to a younger state. Previously, this was only achievable using a powerful gene therapy.

On July 12, 2023, researchers Jae-Hyun Yang, Christopher A. Petty, Thomas Dixon-McDougall, Maria Vina Lopez, Alexander Tyshkovskiy, Sun Maybury-Lewis, Xiao Tian, Nabilah Ibrahim, Zhili Chen, Patrick T. Griffin, Matthew Arnold, Jien Li, Oswaldo A. Martinez, Alexander Behn, Ryan Rogers-Hammond, Suzanne Angeli, Vadim N. Gladyshev, and David A. Sinclair from Harvard Medical School, University of Maine and Massachusetts Institute of Technology (MIT) published a new research paper in Aging, titled, “Chemically induced reprogramming to reverse cellular aging.”

face_with_colon_three year 2021.


UTokyo People NAKANISH Makoto

UTokyo People JOHMURA Yoshikazu

Division of Cancer Cell Biology(IMSUT)

Cambridge scientists have shown that placing physical constraints on an artificially-intelligent system—in much the same way that the human brain has to develop and operate within physical and biological constraints—allows it to develop features of the brains of complex organisms in order to solve tasks.

As such as the organize themselves and make connections, they have to balance competing demands. For example, energy and resources are needed to grow and sustain the network in , while at the same time optimizing the network for . This trade-off shapes all brains within and across species, which may help explain why many brains converge on similar organizational solutions.

Jascha Achterberg, a Gates Scholar from the Medical Research Council Cognition and Brain Sciences Unit (MRC CBSU) at the University of Cambridge said, “Not only is the brain great at solving , it does so while using very little energy. In our new work we show that considering the brain’s problem-solving abilities alongside its goal of spending as few resources as possible can help us understand why brains look like they do.”

Archaeologists from University College Dublin, working with colleagues from Serbia and Slovenia, have uncovered a previously unknown network of massive sites in the heart of Europe that could explain the emergence of the continent’s Bronze Age megaforts—the largest prehistoric constructions seen prior to the Iron Age.

Using and aerial photography to stitch together the prehistoric landscape of the south Carpathian Basin in Central Europe, the team discovered more than 100 sites belonging to a complex society.

Their commonplace use of defensible enclosures was a precursor and likely influence behind the famous hillforts of Europe, built to protect communities later in the Bronze Age.