Toggle light / dark theme

Radioisotope Thermoelectric Generators (RTGs) have a long history of service in space exploration. Since the first was tested in space in 1961, RTGs have gone on to be used by 31 NASA missions, including the Apollo Lunar Surface Experiments Packages (ALSEPs) delivered by the Apollo astronauts to the lunar surface. RTGs have also powered the Viking 1 and 2 missions to Mars, the Ulysses mission to the Sun, Galileo mission to Jupiter, and the Pioneer, Voyager, and New Horizons missions to the outer Solar System – which are currently in (or well on their way to) interstellar space.

In recent years, RTGs have allowed the Curiosity and Perseverance rovers to continue the search for evidence of past (and maybe present) life on Mars. In the coming years, these nuclear batteries will power more astrobiology missions, like the Dragonfly mission that will explore Saturn’s largest moon, Titan. In recent years, there has been concern that NASA was running low on Plutonium-238, the key component for RTGs. Luckily, the U.S. Department of Energy (DOE) recently delivered a large shipment of plutonium oxide, putting it on track to realize its goal of regular production of the radioisotopic material.

The recent shipment of 0.5 kg (over 1 lb) of plutonium oxide from the U.S. Department of Energy’s (DOE’s) Oak Ridge National Laboratory to its Los Alamos National Laboratory is critical to realize NASA’s planned future missions. It is also the largest shipment since the DOE issued its report to Congress in 2010 – “Startup Plan for Plutonium-238 Production for Radioisotope Power Systems.” As per this plan, this delivery is a significant step toward achieving the goal of a sustained annual production rate of 1.5 kg (3.3 lbs) by 2026.

Are you ready to bring more awareness to your brand? Consider becoming a sponsor for The AI Impact Tour. Learn more about the opportunities here.

A new artificial intelligence benchmark called GAIA aims to evaluate whether chatbots like ChatGPT can demonstrate human-like reasoning and competence on everyday tasks.

Created by researchers from Meta, Hugging Face, AutoGPT and GenAI, the benchmark “proposes real-world questions that require a set of fundamental abilities such as reasoning, multi-modality handling, web browsing, and generally tool-use proficiency,” the researchers wrote in a paper published on arXiv.

Despite substantial work, we are still unsure which brain regions are involved and how they are impacted when consciousness is disrupted.


States of unconsciousness, such as those that occur during sleep or while under the effect of anesthesia, have been the focus of countless past neuroscience studies. While these works have identified some brain regions that are active and inactive when humans are unconscious, the precise contribution of each of these regions to consciousness remains largely unclear.

Researchers at Massachusetts General Hospital recently carried out a study aimed at better understanding the activity of different regions of the cortex, the outer layer of the mammalian , during different states of unconsciousness, namely sleep and . Their paper, published in Neuron, identifies distinct cortical networks that are engaged during different states of unconsciousness.

“We have always been interested in trying to understand better how in the brain gives rise to consciousness,” Dr. Rina Zelmann, the lead researcher for the study, told Medical Xpress. “This is a huge and difficult question to answer. In this project, we started with seemingly simple questions, such as: What happens in the human brain when we are unconscious? And, what happens when we cannot be awakened?”

An important #AI report for breast cancer leading to the potential of sparing chemotherapy for many. The 1st comprehensive analysis of both cancerous and non-cancerous tissue in hundreds of thousands of patient tissues->HiPS score https://nature.com/articles/s41591-023-02643-7


Deep learning enables comprehensive and interpretable scoring for breast cancer prognosis prediction, outperforming pathologists in multicenter validation and providing insight on prognostic biomarkers.

Optothermal nanotweezers are an innovative optical design method that has revolutionized classical optical techniques to capture a broad range of nanoparticles. While the optothermal temperature field can be employed for in situ regulation of nanoparticles, challenges remain in identifying their potential for regulating bionanoparticles.

To observe the synergistic effects of optothermal manipulation and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based biodetection, the researchers developed a combination of CRISPR-powered optothermal nanotweezers abbreviated as CRONT.

In a new report in Light: Science & Applications, Jiajie Chen and a research team in optoelectronics engineering, , and physics, accomplished this by harnessing diffusiophoresis and thermo-osmotic flows for optothermal excitation by successfully enriching DNA functionalized gold nanoparticles, CRISPR-associated proteins, and DNA strands.

AI probably won’t replace the need for humans in the climate change fight, but it could make their work faster and more effective.


Valentinrussanov/iStock.

But a Silicon Valley startup called ClimateAi uses artificial intelligence to help farmers cope with the warming temperatures. The startup has created a platform to assess any place’s climate, water, and soil conditions and forecast its suitability for growing crops in the next 20 years.

Another event — volcanic eruptions — might have played a major role in wiping out the dinosaurs.


Ugurhan/iStock.

Two main events that could be responsible for all the chaos happened at the same time: massive volcanic activity called the Deccan Traps in India and Seychelles and a huge meteorite hitting Earth, creating the Chicxulub crater in Mexico.