Toggle light / dark theme

In a recent leap forward for quantum computing and optical technologies, researchers have uncovered an important aspect of photon detection. Superconducting nanowire single-photon detectors (SNSPDs), pivotal in quantum communication and advanced optical systems, have long been hindered by a phenomenon known as intrinsic dark counts (iDCs). These spurious signals, occurring without any real photon trigger, significantly impact the accuracy and reliability of these detectors.

Understanding and mitigating iDCs are crucial for enhancing the performance of SNSPDs, which are integral to a wide range of applications, from secure communication to sensitive astronomical observations.

A team headed by Prof. Lixing You and Prof. Hao Li from Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS) employed a novel differential readout method to investigate the spatial distribution of iDCs in SNSPDs with and without artificial geometric constrictions. This approach allowed for a precise characterization of the spatial origins of iDCs, revealing the significant influence of minute geometric constrictions within the detectors.

The company revealed the bot ahead of its appearance at CES 2024, which it’s touting as an “all-around home manager and companion.”

In addition to serving as a remote monitoring system, LG says the bipedal bot can also interact with humans using voice and image recognition. Apparently, one of its abilities includes greeting users when they arrive home and playing music based on their detected mood.

Renowned journalist and science fiction author Cory Doctorow is convinced that the AI is doomed to drop off a cliff.

“Of course AI is a bubble,” he wrote in a recent piece for sci-fi magazine Locus. “It has all the hallmarks of a classic tech bubble.”

Doctorow likens the AI bubble to the dotcom crisis of the early 2000s, when Silicon Valley firms started dropping like flies when venture capital dried up. It’s a compelling parallel to the current AI landscape, marked by sky-high expectations and even loftier promises that stand in stark contrast to reality.

A groundbreaking discovery in metamaterial design reveals materials with built-in deformation resistance and mechanical memory, promising advancements in robotics and computing.

Researchers from the University of Amsterdam Institute of Physics and ENS de Lyon have discovered how to design materials that necessarily have a point or line where the material doesn’t deform under stress, and that even remember how they have been poked or squeezed in the past. These results could be used in robotics and mechanical computers, while similar design principles could be used in quantum computers.

The outcome is a breakthrough in the field of metamaterials: designer materials whose responses are determined by their structure rather than their chemical composition. To construct a metamaterial with mechanical memory, physicists Xiaofei Guo, Marcelo Guzmán, David Carpentier, Denis Bartolo, and Corentin Coulais realized that its design needs to be “frustrated,” and that this frustration corresponds to a new type of order, which they call non-orientable order.

In this new episode Steven sits down with the physician and longevity expert, Dr Peter Attia. 0:00 Intro 03:26 What is your mission? 06:52 Medicine 3.0 14:51 When should we really think about diseases? 23:14 What role does trauma play in longevity? 47:24 The 5 health deterioration 50:16 Proof exercise is important 01:04:48 Body deterioration can be slowed down 01:08:38 How much exercise should we be doing? 01:14:03 The importance of stability 01:20:59 We’ve engineered discomfort out of our lives 01:26:29 Sugar 01:34:16 Misconceptions about weight loss 01:45:13 Alcohol 01:49:13 Sleep 01:52:35 Hormone replacement therapy 01:57:07 Hair loss 01:59:48 The last guests question You can purchase Dr Attia’s new book, ‘Outlive: The Science and Art of Longevity’, here — https://amzn.to/3FUD6ok Follow Dr Attia: Instagram: https://bit.ly/3rBMyJ7 Twitter: https://bit.ly/44DkrYF YouTube: https://bit.