Toggle light / dark theme

An hypothesized term to fix a small mathematical inconsistency predicted electromagnetic waves, and that they had all the properties of light that were observed before and after him in the Nineteenth Century. Unwittingly, he also pointed science inexorably in the direction of the special theory of relativity

My last two articles, two slightly different takes on “recipes” for understanding Electromagnetism, show how Maxwell’s equations can be understood as arising from the highly special relationships between the electric and magnetic components within the Faraday tensor that is “enforced” by the assumption that the Gauss flux laws, equivalent to Coulomb’s inverse square force law, must be Lorentz covariant (consistent with Special Relativity).

From the standpoint of Special Relativity, there is obviously something very special going on behind these laws, which are clearly not from the outset Lorentz covariant. What i mean is that, as vector laws in three dimensional space, there is no way you can find a general vector field that fulfills them and deduce that it is Lorentz covariant — it simply won’t be so in general. There has to be something else further specializing that field’s relationship with the world to ensure such an in-general-decidedly-NOT-Lorentz covariant equation is, indeed covariant.

A color wheel (CW) is one of the most essential devices for contemporary projection displays because it provides the color initialization definition and determines the color performance of the whole system. However, conventional color wheels remain limited in terms of color performance and efficiency because of the light-absorbing material and time sequential color generation. Quantum dots, found in 1981 and known as a kind of quasi-zero-dimensional nanomaterial, exhibit excellent features for displays due to their quantum confinement effect, which won the 2023 Nobel Prize in Chemistry. Inspired by this, the paper systematically demonstrates a quantum-dot color wheel (QD-CW) device through theoretical derivation, simulation analysis, and experimental verification. The theoretical model to define the duty circle ratio is presented for the QD-CW and verified by Monte Carlo ray-tracing simulation. In terms of experimental verification, the QD-CW device is realized by multiple rounds of a photolithography process, and then assembled into a blue laser pumped projection prototype for full-color display. The chromaticity coordinates of white-balanced output are finally located at (0.317,0.338), which matches well with a standard D65 source. The color gamut area of the QD-CW device reaches 116.6% NTSC, and the average light conversion efficiency (LCE) of the prepared QD-CW is 57.0%. The proposed QD-CW device has ∼40% higher color gamut area and 1.2× higher LCE than a conventional CW device. These exciting findings show a groundbreaking approach to color generation in projection displays, which are expected to shed light on other high-quality display applications.

The onslaught of press, research and perceived urgency has done little to prepare business and information technology leaders to deploy artificial intelligence-powered technologies.

That’s according to the first Cisco AI Readiness Index, issued Tuesday. The company used a double-blind survey of over 8,000 business and IT leaders worldwide.

The findings are alarming. Although 97% of the organizations say that the urgency around deploying AI tech has risen in the last six months, only 14% feel they’re prepared to deploy and utilize it.

Are you ready to bring more awareness to your brand? Consider becoming a sponsor for The AI Impact Tour. Learn more about the opportunities here.

A new hallucination index developed by the research arm of San Francisco-based Galileo, which helps enterprises build, fine-tune and monitor production-grade large language model (LLM) apps, shows that OpenAI’s GPT-4 model works best and hallucinates the least when challenged with multiple tasks.

Published today, the index looked at nearly a dozen open and closed-source LLMs, including Meta’s Llama series, and assessed each of their performance at different tasks to see which LLM experiences the least hallucinations when performing different tasks.

🧬 🔬 💊


In a recent study published in eClinicalMedicine, researchers assess the use of fecal microbiota transplantation to enhance the efficacy of anti-programmed cell death protein 1 (PD-1) therapy for patients with microsatellite stable metastatic colorectal cancer.

Study: Fecal microbiota transplantation plus tislelizumab and fruquintinib in refractory microsatellite stable metastatic colorectal cancer: an open-label, single-arm, phase II trial (RENMIN215). Image Credit: Peakstock / Shutterstock.com.

Background