Toggle light / dark theme

The Subaru Telescope has spotted the terminal ends of dark matter filaments in the Coma cluster stretching across millions of light years. This is the first time that strands of the cosmic web spanning the entire universe have been directly detected. This provides new evidence to test theories about the evolution of the universe.

In the , we are used to seeing matter gathered into round objects like planets, moons, and the sun. But , which accounts for most of the mass in the universe, is believed to exist as a web of long thin strands. But like a spider web, these strands can be hard to see, so astronomers have typically drawn conclusions based on observations of galaxies and gas stuck in the web. This is similar to how if you see a dead leaf that appears to hang in midair, you know there is a spider web that you cannot see.

A team of researchers from Yonsei University used the Subaru Telescope to look for direct signs of dark matter filaments in the Coma cluster, located 321 million away in the direction of the constellation Coma Berenices. Their paper, “Weak-lensing detection of intracluster filaments in the Coma cluster” is published in Nature Astronomy.

The development of a new theory is typically associated with the greats of physics. You might think of Isaac Newton or Albert Einstein, for example. Many Nobel Prizes have already been awarded for new theories.

Researchers at Forschungszentrum Jülich have now programmed an artificial intelligence that has also mastered this feat. Their AI is able to recognize patterns in complex data sets and to formulate them in a physical theory. The findings are published in the journal Physical Review X.

In the following interview, Prof. Moritz Helias from Forschungszentrum Jülich’s Institute for Advanced Simulation (IAS-6) explains what the “Physics of AI” is all about and to what extent it differs from conventional approaches.

In the future, modern machines should not only follow algorithms quickly and precisely, but also function intelligently—in other words, in a way that resembles the human brain. Scientists from Dortmund, Loughborough, Kiev and Nottingham have now developed a concept inspired by eyesight that could make future artificial intelligence much more compact and efficient.

They built an on-chip phonon-magnon for neuromorphic computing which has recently been featured as Editor’s Highlight by Nature Communications.

The human sensory organs convert information such as light or scent into a signal that the brain processes through myriads of neurons connected by even more synapses. The ability of the brain to train, namely transform synapses, combined with the neurons’ huge number, allows humans to process very complex external signals and quickly form a response to them.

We’ve updated our list of the best longevity experts on Twitter/X and added 8 new accounts, including Dr. Morgan Levine, Dr. Brad Stanfield, and the research journal Nature Aging!


Best known for his popular longevity YouTube channel, Stanfield is a medical doctor with an interest in longevity science. Like some other folks on this list of longevity influencers, Stanfield can be a bit iconoclastic, challenging orthodoxy on things like resveratrol and fisetin.

Just like in his well-sourced videos, Stanfield’s Twitter feed is heavy with links to research papers and studies on longevity-related topics, from recent mouse studies out of the Interventions Testing Program, to threads on diet based on new trials. The downside is in his Twitter feed you don’t get to hear that sweet Kiwi accent you get from his videos.

Followers: 24,000

Founder and CEO of AI drug discovery Insilico Medicine (which has raised over $400 million under his leadership), Alex Zhavoronkov seems to be everywhere in longevity circles. From serving on the board of Peter Diamandis’s X-Prize Foundation (which recently announced its longevity X-Prize), to founding biological age testing company Deep Longevity, to somehow having the time to publish over 170 peer-reviewed studies.

To show one of the advantages of being a cyborg, I typed my old prescription into ZEISS Optical Inserts which are for use with the Apple Vision Pro and it said “We are really sorry, but your prescription values go beyond the available range.”

But now that I’m a cyborg with artificial lenses, any optical inserts that I might need are very common and available.

Oh, I experimented a little and it looks like they can’t make lenses for −9.75 diopters or worse. My left-eye used to be −17.25!


We need your eyeglass prescription to create your ZEISS Optical Inserts – Prescription (sometimes also called distance prescription). This is why we ask you to upload it.

Contact lens prescriptions or ones for task-specific uses (office or computer glasses, near reading glasses) don’t qualify.

Cooper-Pair Splitting on Demand.

A proposed device can repeatedly grab pairs of electrons from a superconductor and separate them while preserving their entangled state.


By adiabatically changing the energy levels of two quantum dots, theoreticians predict that it should be possible to control the splitting of Cooper pairs from a superconductor. Such an adiabatic Cooper pair splitter could serve as an on-demand source of entangled electrons in future solid-state quantum technologies.