Toggle light / dark theme

Weaving piezoelectric polymers into nanofibers reveals a surprising pathway to boost stem cell growth naturally, without external power.

Our bodies are a complex tapestry of cells, woven into tissues and organs, like bones, muscle, and skin. All these cells begin as blank slates called stem cells, which are directed to become all the unique cell types in the body by a myriad of genetic and environmental cues.

To harness the biomedical potential of stem cells, researchers have long sought ways to untangle these factors and find a recipe to efficiently grow any desired cell type. Now, expertise from textile research is helping create a new platform to achieve this goal.

Investigators from the laboratory of Ali Shilatifard, Ph.D., the Robert Francis Furchgott Professor and chair of Biochemistry and Molecular Genetics, have discovered a new repeat gene cluster sequence that is exclusively expressed in humans and non-human primates.

The discovery, detailed in a study published in Science Advances, is a breakthrough for biology and has wide-ranging implications for future research in , , and the study of repetitive DNA sequences, according to the authors.

“This is an unbelievable discovery of the first elongation factor that is repeated within the genome and is very primate-specific,” said Shilatifard, who is also director of the Simpson Querrey Institute for Epigenetics and a professor of Pediatrics.

Nvidia’s (NASDAQ: NVDA) stock has rallied about 1,110% over the past five years, turning it into the world’s first trillion-dollar chipmaker. A large portion of that rally was fueled by the explosive growth of the artificial intelligence (AI) market, which drove more companies to buy Nvidia’s high-end data center chips for processing AI tasks.

Nvidia might still have room to run, but it’s asking a lot for a $1.2 trillion company to generate even bigger multibagger gains. Therefore, many investors are already likely seeking out the “next Nvidia” — a company that is exposed to the same secular AI tailwinds but has more upside potential. Could the quantum computing company IonQ (NYSE: IONQ) check all the right boxes?

Unlike traditional computers, which process data with binary “bits” of zeros and ones, quantum computers can store zeros and ones simultaneously in “qubits” to process data at much faster rates. However, quantum computing systems are also much larger, more expensive, and more prone to making mistakes than traditional computers.

Europe has become known as a second-place destination for business, and more recently, innovation.

Disruptive technologies like AI have hailed from the United States for decades with no European challenger in sight.

However, when a four-week-old French AI startup secured €105 million for its seed round, it demonstrated that Europe isn’t as disadvantaged as people think. While AI is a saturated market, quantum computing can allow Europe to survive in a century ruled by China and the US.

NATIONAL HARBOR, Md. (AP) — Artificial intelligence employed by the U.S. military has piloted pint-sized surveillance drones in special operations forces’ missions and helped Ukraine in its war against Russia. It tracks soldiers’ fitness, predicts when Air Force planes need maintenance and helps keep tabs on rivals in space.

Now, the Pentagon is intent on fielding multiple thousands of relatively inexpensive, expendable AI-enabled autonomous vehicles by 2026 to keep pace with China. The ambitious initiative — dubbed Replicator — seeks to “galvanize progress in the too-slow shift of U.S. military innovation to leverage platforms that are small, smart, cheap, and many,” Deputy Secretary of Defense Kathleen Hicks said in August.

While its funding is uncertain and details vague, Replicator is expected to accelerate hard decisions on what AI tech is mature and trustworthy enough to deploy — including on weaponized systems.

Telecommunication goes back a lot further than you might expect. While the word has become synonymous with television broadcasting and phone communication, it really describes any communication system over a distance, and could include smoke signals. These simple signals were used to convey messages from “the enemy is approaching” to the fact that a whale has beached itself and can be butchered for meat.

While some ancient cultures varied smoke colors to convey further information, there’s only so much you can get across with a big fire. One particularly cool ancient version of telecommunication, which aimed to convey more precise meanings, was the hydraulic telegraph, used in Ancient Greece in around 350 BCE.

The idea – thought to have been invented by Aeneas of Stymphalus, a writer on the military at the time – was simple, but neat. Each person you want to communicate with is given a jar of the same size, filled with the same amount of water. Inside the jar is a floating rod, on which was inscribed identical messages that are useful to pass along.

To try everything Brilliant has to offer—free—for a full 30 days, visit http://brilliant.org/ArtemKirsanov/
The first 200 of you will get 20% off Brilliant’s annual premium subscription.

My name is Artem, I’m a computational neuroscience student and researcher. In this video we discuss engrams – fundamental units of memory in the brain. We explore what engrams are, how memory is allocated, where it is stored, and how different memories become linked with each other.

Patreon: https://www.patreon.com/artemkirsanov.
Twitter: https://twitter.com/ArtemKRSV

OUTLINE:

I’ve posted a number of times about artificial intelligence, mind uploading, and various related topics. There are a number of things that can come up in the resulting discussions, one of them being Kurt Gödel’s incompleteness theorems.

The typical line of arguments goes something like this: Gödel implies that there are solutions that no algorithmic system can accomplish but that humans can accomplish, therefore the computational theory of mind is wrong, artificial general intelligence is impossible, and animal, or at least human minds require some as of yet unknown physics, most likely having something to do with the quantum wave function collapse (since that remains an intractable mystery in physics).

This idea was made popular by authors like Roger Penrose, a mathematician and theoretical physicist, and Stuart Hameroff, an anesthesiologist. But it follows earlier speculations from philosopher J.R. Lucas, and from Gödel himself, although Gödel was far more cautious in his views than the later writers.