Toggle light / dark theme

Biomimetic robots, which mimic the movements and biological functions of living organisms, are a fascinating area of research that can not only lead to more efficient robots but also serve as a platform for understanding muscle biology.

Among these, biohybrid actuators, made up of soft materials and muscular cells that can replicate the forces of actual muscles, have the potential to achieve life-like movements and functions, including self-healing, , and high power-to-weight ratio, which have been difficult for traditional bulky robots that require heavy energy sources.

One way to achieve these life-like movements is to arrange in biohybrid actuators in an anisotropic manner. This involves aligning them in a specific pattern where they are oriented in different directions, like what is found in living organisms.

Generating quantum correlations between light and microwaves.

Non-classical microwave–optical photon pair generation with a chip-scale transducer.


A transducer that generates microwave–optical photon pairs is demonstrated. This could provide an interface between optical communication networks and superconducting quantum devices that operate at microwave frequencies.

A study recently submitted to The Astronomical Journal continues to search for the elusive Planet Nine (also called Planet X), which is a hypothetical planet that potentially orbits in the outer reaches of the solar system and well beyond the orbit of the dwarf planet, Pluto.

The goal of this study, which is available on the pre-print server arXiv, was to narrow down the possible locations of Planet Nine and holds the potential to help researchers better understand the makeup of our solar system, along with its formation and evolutionary processes. So, what was the motivation behind this study regarding narrowing down the location of a potential Planet 9?

Dr. Mike Brown, who is a Richard and Barbara Rosenberg Professor of Astronomy at Caltech and lead author of the study, tells Universe Today, “We are continuing to try to systematically cover all of the regions of the sky where we predict Planet Nine to be. Using data from Pan-STARRS allowed us to cover the largest region to date.”

Inspired by the color-changing ability of chameleons, researchers have developed a sustainable technique to 3D-print multiple, dynamic colors from a single ink.

“By designing new chemistries and printing processes, we can modulate structural color on the fly to produce color gradients not possible before,” said Ying Diao, an associate professor of chemistry and chemical and biomolecular engineering at the University of Illinois Urbana-Champaign and a researcher at the Beckman Institute for Advanced Science and Technology.

The study appears in the journal PNAS.