Toggle light / dark theme

A team of Japanese researchers has discovered significant properties of non-Fock states (iNFS) in quantum technology, revealing their stability through multiple linear optics and paving the way for advancements in optical quantum computing and sensing.

Quantum objects, such as electrons and photons, behave differently from other objects in ways that enable quantum technology. Therein lies the key to unlocking the mystery of quantum entanglement, in which multiple photons exist in multiple modes or frequencies.

In pursuing photonic quantum technologies, previous studies have established the usefulness of Fock states. These are multiphoton, multimode states made possible by cleverly combining a number of one-photon inputs using so-called linear optics. However, some essential and valuable quantum states require more than this photon-by-photon approach.

SN 1,006, a supernova observed over a millennium ago, has been extensively studied using NASA ’s Chandra and IXPE telescopes, revealing critical details about its magnetic field and particle acceleration, contributing to our understanding of cosmic rays.

When the object now called SN 1,006 first appeared on May 1, 1006 A.D., it was far brighter than Venus and visible during the daytime for weeks. Astronomers in China, Japan, Europe, and the Arab world all documented this spectacular sight, which was later understood to have been a supernova. With the advent of the Space Age in the 1960s, scientists were able to launch instruments and detectors above Earth’s atmosphere to observe the Universe in wavelengths that are blocked from the ground, including X-rays. The remains of SN 1,006 was one of the faintest X-ray sources detected by the first generation of X-ray satellites.

Recent observations with nasa’s x-ray telescopes.

In 2022, scientists from Northwestern University presented novel observational data indicating that long gamma-ray bursts (GRBs) might originate from the collision of a neutron star with another dense celestial body, such as another neutron star or a black hole — a finding that was previously believed to be impossible.

Now, another Northwestern team offers a potential explanation for what generated the unprecedented and incredibly luminous burst of light.

After developing the first numerical simulation that follows the jet evolution in a black hole — neutron star merger out to large distances, the astrophysicists discovered that the post-merger black hole can launch jets of material from the swallowed neutron star.

Advancements in attosecond soft-X-ray spectroscopy by ICFO researchers have transformed material analysis, particularly in studying light-matter interactions and many-body dynamics, with promising implications for future technological applications.

X-ray absorption spectroscopy is an element-selective and electronic-state sensitive technique that is one of the most widely used analytical techniques to study the composition of materials or substances. Until recently, the method required arduous wavelength scanning and did not provide ultrafast temporal resolution to study electronic dynamics.

Over the last decade, the Attoscience and Ultrafast Optics group at ICFO le, d by ICREA Prof. at ICFO Jens Biegert h, has developed attosecond soft-X-ray absorption spectroscopy into a new analytical tool without the need for scanning and with attosecond temporal resolution.[1,2].

Go to https://sponsr.is/cs_whatif and use code WHATIFSHOW to save 25% off today. Thanks to Curiosity Stream for sponsoring today’s video.

One thousand years into the future, humans might look like this.

00:00 Human Evolution.
01:00 5,000 YEARS INTO THE FUTURE
03:39 25,000 YEARS INTO THE FUTURE
06:15 250,000 YEARS INTO THE FUTURE
08:47 1 MILLION YEARS INTO THE FUTURE

Get the What if book: http://bit.ly/ytc-the-what-if-100-book.

Neurons in the brain communicate with each other at their synapses. It has long been understood that this communication occurs through biochemical processes. Here, we reveal that mechanical tension in neurons is essential for communication. Using in vitro rat hippocampal neurons, we find that 1) neurons become tout/tensed after forming synapses resulting in a contractile neural network, and 2) without this contractility, neurons fail to fire. To measure time evolution of network contractility in 3D (not 2D) extracellular matrix, we developed an ultrasensitive force sensor with 1 nN resolution. We employed Multi-Electrode Array and iGluSnFR, a glutamate sensor, to quantify neuronal firing at the network and at the single synapse scale, respectively. When neuron contractility is relaxed, both techniques show significantly reduced firing. Firing resumes when contractility is restored.

This year gave rise to an incredible mix of brain implants that can record, decode, and alter brain activity.

It sounds like déjà vu—brain-machine interfaces also lived rent free in my head in last year’s roundup, but for good reason. Neuroscientists are building increasingly sophisticated and flexible electronic chips that seamlessly integrate machine intelligence with our brains and spinal cords at record-breaking speed. What was previously science fiction—for example, helping paralyzed people regain their ability to walk, swim, and kayak—is now reality.

This year, brain implants further transformed people’s lives. The not-so-secret sauce? AI.

Google is reportedly planning to cut 30,000 jobs by integrating artificial intelligence into daily operations. 2023 has witnessed mass layoffs triggered by the emergence of AI replacements. Palki Sharma explains how you can save your job from an AI takeover. — Google | Mass Layoffs | Artificial Intelligence | Job Opportunities | Firstpost | World News | Vantage | Palki Sharma #google #layoffs #jobmarket #ai #artificialintelligence #technology #firstpost #vantageonfirstpost #palkisharma #worldnews Vantage is a ground-breaking news, opinions, and current affairs show from Firstpost. Catering to a global audience, Vantage covers the biggest news stories from a 360-degree perspective, giving viewers a chance to assess the impact of world events through a uniquely Indian lens. The show is anchored by Palki Sharma, Managing Editor, Firstpost. By breaking stereotypes, Vantage aims to challenge conventional wisdom and present an alternative view on global affairs, defying the norm and opening the door to new perspectives. The show goes beyond the headlines to uncover the hidden stories – making Vantage a destination for thought-provoking ideas. Vantage airs Monday to Friday at 9 PM IST on Firstpost across all leading platforms. Subscribe to Firstpost channel and press the bell icon to get notified when we go live. / @firstpost Follow Firstpost on Instagram: / firstpost Follow Firstpost on Facebook: / firstpostin Follow Firstpost on Twitter: / firstpost Follow Firstpost on WhatsApp: https://www.whatsapp.com/channel/0029