Toggle light / dark theme

A combination of battery technology and catalysis opens new avenues for cheap, high-capacity batteries. Lithium-sulfur batteries can potentially store five to 10 times more energy than current state-of-the-art lithium-ion batteries at much lower cost. Current lithium-ion batteries use cobalt oxide as the cathode, an expensive mineral mined in ways that harm people and the environment. Lithium-sulfur batteries replace cobalt oxide with sulfur, which is abundant and cheap, costing less than one-hundredth the price of cobalt.

But there’s a catch: Chemical reactions, particularly the sulfur reduction reaction, are very complex and not well understood, and undesired side reactions could end the batteries’ lives well before those of traditional batteries.

Now, researchers led by UCLA chemists Xiangfeng Duan and Philippe Sautet have deciphered the key pathways of this reaction.

Once hypothetical monsters born in a tangled nest of Einstein’s general theory of relativity, black holes are now recognized as bona fide celestial objects as real as stars, moons, and galaxies.

But make no mistake. Their engines are still as mysterious as they were when the German theoretical physicist Karl Schwarzschild first played with Einstein’s field equations and came to the conclusion that space and time could pucker up into pits of no return.

Goethe University Frankfurt physicists Daniel Jampolski and Luciano Rezzolla have gone back to step one in an attempt to make better sense of the equations that describe black holes and have come away with a solution that’s easier to picture, if no less bizarre.

Eye contact and body language are critical in social interaction, but exactly how the brain uses this information in order to inform behavior in real time is not well understood.

By combining behavioral and wireless eye tracking and neural monitoring, a team of Rice University scientists and collaborators studied how pairs of freely moving macaques interacting in a naturalistic setting use visual cues to guide complex, goal-oriented cooperative behavior. The study published in Nature offers first evidence that the part of the brain that processes visual information ⎯ the visual cortex ⎯ plays an active role in social behavior by providing an executive area ⎯ the prefrontal cortex ⎯ with the signals necessary to generate the decision to cooperate.

We are the first to use telemetric devices to record neural activity from multiple cortical populations in the visual and prefrontal cortex while animals explore their environment and interact with one another. When primates, including humans, interact, we make eye contact and use body language to indicate to conspecifics what we want to do.

Summary: Researchers unlocked how the brain processes melodies, creating a detailed map of auditory cortex activity. Their study reveals that the brain engages in dual tasks when hearing music: tracking pitch with neurons used for speech and predicting future notes with music-specific neurons.

This breakthrough clarifies the longstanding mystery of melody perception, demonstrating that some neural processes for music and speech are shared, while others are uniquely musical. The discovery enhances our understanding of the brain’s complex response to music and opens avenues for exploring music’s emotional and therapeutic impacts.

The human genome, a complex mosaic of genetic data essential for life, has proven to be a treasure trove of strange features. Among them are segments of DNA that can “jump around” and move within the genome, known as “transposable elements” (TEs).

As they change their position within the genome, TEs can potentially cause mutations and alter the cell’s genetic profile but also are master orchestrators of our genome’s organization and expression. For example, TEs contribute to regulatory elements, transcription factor binding sites, and the creation of chimeric transcripts – genetic sequences created when segments from two different genes or parts of the genome join together to form a new, hybrid RNA molecule.

Matching their functional importance, TEs have been recognized to account for half of the human DNA. However, as they move and age, TEs pick up changes that mask their original form. Over time, TEs “degenerate” and become less recognizable, making it difficult for scientists to identify and track them in our genetic blueprint.