Toggle light / dark theme

A platform developed nearly 20 years ago previously used to detect protein interactions with DNA and conduct accurate COVID-19 testing has been repurposed to create a highly sensitive water contamination detection tool.

The technology merges two exciting fields— and nanotechnology—to create a new platform for chemical monitoring. When tuned to detect different contaminants, the technology could detect the metals lead and cadmium at concentrations down to two and one parts per billion, respectively, in a matter of minutes.

The paper was published this week in the journal ACS Nano and represents research from multiple disciplines within Northwestern’s McCormick School of Engineering.

Using the James Webb Space Telescope (JWST), an international team of astronomers has explored the atmosphere of a nearby brown dwarf binary designated WISE J045853.90+643451.9. As a result, they detected hydrogen cyanide and acetylene in the atmosphere of this binary, marking the first time these two species have been identified in the atmosphere of a brown dwarf. The finding was reported Feb. 19 on the arXiv pre-print server.

Brown dwarfs are intermediate objects between planets and stars. Astronomers generally agree that they are substellar objects occupying the mass range between 13 and 80 Jupiter masses. One subclass of brown dwarfs (with effective temperatures between 500 and 1,500 K) is known as T-dwarfs, and represents the coolest and least luminous substellar objects so far detected.

Located just 30.1 light years away, WISE J045853.90+643451.9 (or WISE-0458) is a binary composed of two T-dwarfs of spectral type T8.5 and T9, with effective temperatures of 600 and 500 K, respectively. The pair has a semi-major axis of approximately 5.0 AU.

Neutrinos have always been difficult to study because their small mass and neutral charge make them especially elusive. Scientists have made a lot of headway in the field and can now detect three flavors, or oscillation states, of neutrinos. Other flavors continue to be elusive—though that could be because they don’t even exist.

Sterile neutrinos, a flavor that has been proposed to play a role in neutrino mass generation and causing the oscillations of other neutrinos, have been hinted at in previous experiments but never detected.

In a study published in Physical Review Letters, NOvA collaboration scientists did not find evidence of , but their work puts the tightest constraints on parameter space to date for where sterile neutrinos could be found.

Overcoming the resolution limit in a light microscope of around half a wavelength of light (about 250 nanometers) is one of the most significant developments in optics. Due to the wave nature of light, even the best lens cannot produce a light spot smaller than 250 nanometers in diameter. All molecules within this bright spot are illuminated at the same time, light up together, and therefore, appear inseparable as a blurred whole.

In the early 1990s, Stefan Hell realized that molecules could be separated by briefly switching the molecular signal “OFF” and “ON” in such a way that closely neighboring molecules are forced to signal consecutively. Molecules that signal consecutively can be readily distinguished.

In fluorescence microscopy, this ON/OFF separation principle could be implemented to perfection, since molecular fluorescence can be easily switched on and off. In fact, STED and PALM/STORM, as well as the more recent super-resolution fluorescence microscopes, are all based on this ON/OFF principle.

Nanozymes are synthetic materials that have enzyme-like catalytic properties, and they are broadly used for biomedical purposes, such as disease diagnostics. However, inorganic nanozymes are generally toxic, expensive, and complicated to produce, making them unsuitable for the agricultural and food industries.

A University of Illinois Urbana-Champaign research team has developed organic-material-based nanozymes that are non-toxic, environmentally friendly, and cost-effective. In two new studies, they introduce next-generation organic nanozymes and explore a point-of-use platform for molecule detection in .

“The first generation of organic-compound-based (OC) nanozymes had some minor drawbacks, so our research group worked to make improvements. The previous OC nanozymes required the use of particle stabilizing polymers having repeatable functional groups, which assured stability of the nanozyme’s nanoscale framework, but didn’t achieve a sufficiently small particle size,” said lead author Dong Hoon Lee, who completed his Ph.D. from the Department of Agricultural and Biological Engineering (ABE), part of the College of Agricultural, Consumer and Environmental Sciences and The Grainger College of Engineering at the U. of I.

A study led by UMass Chan Medical School researchers has demonstrated that a gene therapy to correct a mutation that causes maple syrup urine disease (MSUD) prevented newborn death, normalized growth, restored coordinated expression of the affected genes and stabilized biomarkers in a calf as well as in mice.

“Simply put, we believe the demonstrated in both animal species, especially in the cow, very well showcases the therapeutic potential for MSUD, in part because the diseased cow, without treatment, has a very similar metabolic profile as the patients,” said Dan Wang, Ph.D., assistant professor of genetic & cellular medicine.

Dr. Wang is co-principal investigator with Heather Gray-Edwards, DVM, Ph.D., assistant professor of genetic & cellular medicine; Guangping Gao, Ph.D., the Penelope Booth Rockwell Chair in Biomedical Research, director of the Horae Gene Therapy Center, director of the Li Weibo Institute for Rare Diseases Research and chair and professor of genetic & cellular medicine; and Kevin Strauss, MD, adjunct professor of pediatrics and head of therapeutic development at the Clinic for Special Children in Gordonville, Pennsylvania.

The quantum rules shaping molecular collisions are now coming into focus, offering fresh insights for chemistry and materials science. When molecules collide with surfaces, a complex exchange of energy takes place between the molecule and the atoms composing the surface. But beneath this dizzying complexity, quantum mechanics, which celebrates its 100th anniversary this year, governs the process.

Quantum interference, in particular, plays a key role. It occurs when different pathways that a molecule can take overlap, resulting in specific patterns of interaction: some pathways amplify each other, while others cancel out entirely. This “dance of waves” affects how molecules exchange energy and momentum with surfaces, and ultimately how efficiently they react.

But until now, observing in collisions with heavier molecules like methane (CH4) was nearly impossible because of the overwhelming number of pathways available for the system to take en route to the different collision outcomes. Many scientists have even wondered if all quantum effects would always “wash out” for these processes so that the simpler laws of classical physics, which apply to everyday, “macroscopic” objects, might be enough to describe them.

For the first time, researchers have used high-speed laser writing to create lines spaced just 100 nm apart on a glass substrate. The optimized printing approach could enable super-resolution 3D direct laser writing (DLW) of microlenses, photonics crystals, micro-optical devices, metamaterials and more.

DLW is an additive manufacturing technique that uses a focused laser beam to selectively solidify, or polymerize, a material with nanoscale precision. DLW typically uses multi-photon polymerization to polymerize materials in a precise, 3D manner.

“Increasing the —the minimum distance between two adjacent features—is difficult because the intense laser light can cause unwanted exposure in nearby areas during DLW,” said Qiulan Liu, a member of the research team from Zhejiang Lab and Zhejiang University in China. “However, by using a unique dual-beam optical setup and a special photoresist, we were able to overcome this challenge and achieve super-resolution DLW.”

Chiral-structural-color materials produce color through microscopic structures that interact with light rather than through pigmentation or dyes. Some beetle exoskeletons, avian feathers, butterfly wings, and marine organisms feature these structures naturally, producing iridescent or polarization-dependent colors. Over the last 10–15 years, scientists have made progress in developing artificial chiral-structural-color materials.

Recently, Chinese researchers have made a breakthrough in the field by discovering that microdomes made from common polymers exhibit tunable chiral structural colors with broad-spectrum capabilities and multiple polarization-modulated chirality. This advancement could have significant implications for applications in displays, sensors, and .

Published in PNAS, the study was led by Prof. Li Mingzhu’s team from the Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences.

Many next-generation quantum devices rely on single-photon emitters based on optically active defects in solids, known as color centers. Understanding their properties is fundamental to developing novel quantum technologies.

Now, in a study published in APL Materials, a multi-institutional research team led by Osaka University has sought to clarify the origin of the extremely bright color centers at the interface between (SiO2) and silicon carbide (SiC).

Previous research has demonstrated a range of factors that can play a role in the formation of these interface color centers, including the effect of annealing after oxidation. However, the energy level structure (i.e., the electronic transitions taking place) responsible for luminescence, a crucial factor for understanding the origin of color centers, was completely unknown.