Toggle light / dark theme

When it comes to the cosmic conundrum of how early galaxies grew to become so massive so quickly Gz9p3 could be a real puzzle. Not only is it more massive than expected, but it is around 10 times more massive than other galaxies the JWST has seen in similar eras of the universe’s history.

Related: James Webb Space Telescope complicates expanding universe paradox by checking Hubble’s work

“Just a couple of years ago, Gz9p3 appeared as a single point of light through the Hubble Space Telescope,” Kit Boyett, team member and a scientist at the University of Melbourne, wrote for the institute’s Pursuit publication. “But by using the JWST we could observe this object as it was 510 million years after the Big Bang, around 13 billion years ago.”

Much-hated Reddit founder and CEO Steve Huffman gifted himself a stunning $193 million compensation package — while unpaid moderators on the platform have yet to see a single dollar, as Variety reports.

It’s an especially pertinent topic given that the company went public at a share price of $34 today, for a valuation of $6.4 billion.

During a recent Q&A video posted to the subreddit named after the company’s brand new New York stock exchange ticker RDDT, Huffman argued that he was totally justified in paying himself more than the CEOs of Meta, Pinterest and Snap combined.

Despite the astonishing successes of quantum mechanics, due to some fundamental problems such as the measurement problem and quantum arrival time problem, the predictions of the theory are in some cases not quite clear and unique.


The measurement and quantum arrival time problems have originated various predictions for the join spatiotemporal distribution of particle detection events, derived from different formulations and interpretations of the quantum theory. By reworking the famous double-slit experiment, the authors propose a realizable setup to probe such predictions.

Weak fluctuations in superconductivity, a precursor phenomenon to superconductivity, have been successfully detected by a research group at the Tokyo Institute of Technology (Tokyo Tech). This breakthrough was achieved by measuring the thermoelectric effect in superconductors over a wide range of magnetic fields and over a wide range of temperatures, from much higher than the superconducting transition temperature to very low temperatures near absolute zero. The results of this study were published online in Nature Communications on March 16, 2024.

This revealed the full picture of fluctuations in superconductivity with respect to temperature and magnetic field, and demonstrated that the origin of the anomalous metallic state in magnetic fields—which has been an unsolved problem in the field of two-dimensional superconductivity for 30 years—is the existence of a quantum , where are at their strongest.