Toggle light / dark theme

Memory formation, storage, and retrieval are fundamental processes that define who we are and how we interact with the world. At the cellular level, these processes rely on specialized neurons called engram cells—neuronal populations that physically encode our experiences and allow us to recall them later. Over the past few decades, scientists have made significant progress in identifying these neuronal ensembles and understanding some aspects of memory allocation.

Although sleep is widely known to be essential for memory processing and consolidation, many of its underlying mechanisms and functions are unclear. Traditional views have largely focused on sleep as a backward-looking process that serves to strengthen past experiences, but could it simultaneously help prepare the brain for new learning?

In a recent effort to tackle this question, a research team from Japan, led by Distinguished Professor Kaoru Inokuchi from the University of Toyama, uncovered a dual role for sleep in memory processing. Their paper, which will be published in Nature Communications on April 28, 2025, explores how the brain simultaneously preserves past memories while preparing for future ones during sleep periods.

A research team has identified a previously unknown enzyme, SIRT2, that plays a key role in memory loss associated with Alzheimer’s disease (AD). The study provides critical insights into how astrocytes contribute to cognitive decline by producing excessive amounts of the inhibitory neurotransmitter GABA.

Astrocytes, once thought to only support neurons, are now known to actively influence brain function. In Alzheimer’s disease, astrocytes become reactive, meaning they change their behavior in response to the presence of amyloid-beta (Aβ) plaques, a hallmark of the disease. While astrocytes attempt to clear these plaques, this process triggers a harmful chain reaction. First, they uptake them via autophagy and degrade them by the urea cycle, as discovered in previous research. However, this breakdown results in the overproduction of GABA, which dampens brain activity and leads to memory impairment. Additionally, this pathway generates hydrogen peroxide (H2O2), a toxic byproduct that causes further neuronal death and neurodegeneration.

The research team set out to uncover which enzymes were responsible for excessive GABA production, hoping to find a way to selectively block its harmful effects without interfering with other brain functions. Using molecular analysis, microscopic imaging, and electrophysiology, the researchers identified SIRT2 and ALDH1A1 as critical enzymes involved in GABA overproduction in Alzheimer’s-affected astrocytes.

By analyzing the data from the Atacama Large Millimeter/submillimeter Array (ALMA), astronomers have investigated a star-forming region known as G34.26+0.15. As a result, they discovered an explosive outflow in this complex. The study was reported in a paper published on April 22 on the arXiv preprint server.

The presence of cellular defects of multifactorial nature can be hard to characterize accurately and early due to the complex interplay of genetic, environmental, and lifestyle factors. With this study, by bridging optically-induced dielectrophoresis (ODEP), microfluidics, live-cell imaging, and machine learning, we provide the ground for devising a robotic micromanipulation and analysis system for single-cell phenotyping. Cells under the influence of nonuniform electric fields generated via ODEP can be recorded and measured. The induced responses obtained under time-variant ODEP stimulation reflect the cells’ chemical, morphological, and structural characteristics in an automated, flexible, and label-free manner.

As demand grows for more powerful and efficient microelectronics systems, industry is turning to 3D integration—stacking chips on top of each other. This vertically layered architecture could allow high-performance processors, like those used for artificial intelligence, to be packaged closely with other highly specialized chips for communication or imaging. But technologists everywhere face a major challenge: how to prevent these stacks from overheating.

Now, MIT Lincoln Laboratory has developed a specialized chip to test and validate cooling solutions for packaged chip stacks. The chip dissipates extremely , mimicking high-performance logic chips, to generate heat through the silicon layer and in localized . Then, as cooling technologies are applied to the packaged stack, the chip measures temperature changes. When sandwiched in a stack, the chip will allow researchers to study how heat moves through stack layers and benchmark progress in keeping them cool.

“If you have just a , you can cool it from above or below. But if you start stacking several chips on top of each other, the heat has nowhere to escape. No cooling methods exist today that allow industry to stack multiples of these really high-performance chips,” says Chenson Chen, who led the development of the chip with Ryan Keech, both of the laboratory’s Advanced Materials and Microsystems Group.

Astronomers have discovered a previously unknown birthplace of some of the universe’s rarest elements: a giant flare unleashed by a supermagnetized star. The astronomers calculated that such flares could be responsible for forging up to 10% of our galaxy’s gold, platinum and other heavy elements.

The discovery also resolves a decades-long mystery concerning a bright flash of light and particles spotted by a space telescope in December 2004. The light came from a magnetar—a type of star wrapped in magnetic fields trillions of times as strong as Earth’s—that had unleashed a giant .

The powerful blast of radiation only lasted a few seconds, but it released more energy than the sun does in 1 million years. While the flare’s origin was quickly identified, a second, smaller signal from the star, peaking 10 minutes later, confounded scientists at the time. For 20 years, that signal went unexplained.

Author summary Humans exhibit a remarkable ability to regulate their actions in response to changing environmental demands. An essential aspect of action regulation is action inhibition that occurs when stopping unwanted or inappropriate actions. However, everyday life rarely calls for complete inhibition of responses without switching behavior to adapt to new situations. Despite extensive research to understand how the brain switches actions, the computations underlying the switching process and how it relates to the selecting and stopping processes remain elusive. Part of this challenge lies in the fact that these processes are rarely studied together, making it difficult to develop a unified theory that explains the computational aspects of the action regulation mechanism. The current study aims to delineate the computations underlying action regulation functions that involve inhibitory control, explore how these functions interrelate, and how they can be implemented within brain networks, opening new avenues for future neurophysiological investigations.