Menu

Blog

Page 21

Jan 9, 2025

How macronucleophagy ensures survival in nitrogen-starved yeast

Posted by in categories: biotech/medical, neuroscience

Autophagy, the cell’s essential housekeeping process, involves degrading and recycling damaged organelles, proteins, and other components to prevent clutter. This vital mechanism, found in all life forms from single-celled organisms to plants and animals, is key to maintaining cellular homeostasis. Its disruption is linked to many known diseases in humans, such as Alzheimer’s, Parkinson’s, and cancer.

Though understanding in detail is important from medical and biological perspectives, it is not a one-size-fits-all process. There are several forms of autophagy that differ in how the components to be degraded are transported to the lysosomes or vacuoles—the organelles that serve as the cell’s waste disposal and recycling centers.

Autophagy targets a range of intracellular components, including a part of the nucleus that stores important chromosomes. However, the physiological significance of autophagic degradation of the nucleus remains unknown.

Jan 9, 2025

The LZ experiment’s first science run sets new constraints on dark matter interactions

Posted by in categories: cosmology, particle physics, science

The LUX ZEPLIN (LZ) Dark Matter experiment is a large research effort involving over 200 scientists and engineers at 40 institutions worldwide. Its key objective is to search for weakly interacting massive particles (WIMPs) by analyzing data collected by the LZ detector, situated at the Sanford Underground Research Facility in South Dakota.

The LZ Collaboration recently released the results of the first experimental run of the LZ experiment. These results, published in Physical Review Letters, set new constraints on the interactions between dark matter and other particles, which could inform future searches for weakly-interacting dark matter candidates.

“There is no reason to believe that dark matter will interact with regular matter in the simplest way, so it is important to consider more ,” Sam Eriksen, co-author of the paper, told Phys.org.

Jan 9, 2025

Gamma-ray outburst detected from the radio source 3C 216

Posted by in category: cosmology

Using NASA’s Fermi space telescope, Italian astronomers have observed a radio source known as 3C 216. As a result, they detected increased gamma-ray activity from this source, including a strong outburst. The finding is reported in a research paper published on the arXiv preprint server.

3C 216 is an extragalactic radio source at a redshift of approximately 0.67, with a projected linear size of about 182,500 light years. It has an overall steep radio spectrum and a relatively compact morphology. Therefore, it is classified as a compact steep spectrum (CSS) object.

Previous observations of 3C 216 have found that it is a radio galaxy consisting of a central component surrounded by a more extended structure, and has an inner relativistic jet. It turns out that this galaxy is associated with source 4FGL J0910.0+4257.

Jan 9, 2025

Specialized hardware solves high-order optimization problems with in-memory computing

Posted by in categories: biotech/medical, computing, neuroscience

In an unprecedented new study, researchers have shown neurotransmitters in the human brain are released during the processing of the emotional content of language, providing new insights into how people interpret the significance of words.

The work, conducted by an international team led by Virginia Tech scientists, offers deeper understanding into how language influences human choices and mental health.

Spearheaded by computational neuroscientist Read Montague, a professor of the Fralin Biomedical Research Institute at VTC and director of the institute’s Center for Human Neuroscience Research, the study represents a first-of-its-kind exploration of how neurotransmitters process the emotional content of language—a uniquely human function.

Jan 9, 2025

Study links gene-regulating brain circuit formation to autism and seizures

Posted by in categories: futurism, neuroscience

The gene neuropilin2 encodes a receptor involved in cell-cell interactions in the brain and plays a key role in regulating the development of neural circuits. Neuropilin2 controls migration of inhibitory neurons as well as the formation and maintenance of synaptic connections in excitatory neurons—two crucial components of brain activity.

A study led by neuroscientist Viji Santhakumar at the University of California, Riverside, and collaborators at Rutgers University in Newark, New Jersey, now offers insights into how this gene contributes to the development of behavioral changes associated with and epilepsy.

The study, published in Molecular Psychiatry, offers a pathway for future treatments aimed at alleviating some challenging symptoms of these frequently co-occurring conditions.

Jan 9, 2025

Micro, modular, mobile—DNA-linked microrobots offer new possibilities in medicine and manufacturing

Posted by in categories: biotech/medical, robotics/AI

When robots are made out of modular units, their size, shape, and functionality can be modified to perform any number of tasks. At the microscale, modular robots could enable applications like targeted drug delivery and autonomous micromanufacturing; but building hundreds of identical robots the size of a red blood cell has its challenges.

“At this scale, robots are not big enough to hold a microcontroller to tell them what to do,” explained Taryn Imamura, a Ph.D. Candidate in Carnegie Mellon University’s Department of Mechanical Engineering.

“Active colloids (the robots) have what we call embodied intelligence, meaning their behavior, including the speed at which they travel, is determined by their size and shape. At the same time, it becomes more difficult to build microrobots that have the same size and structure as they get smaller.”

Jan 9, 2025

Discovery of new class of particles could take quantum mechanics one step further

Posted by in categories: particle physics, quantum physics

Amid the many mysteries of quantum physics, subatomic particles don’t always follow the rules of the physical world. They can exist in two places at once, pass through solid barriers and even communicate across vast distances instantaneously. These behaviors may seem impossible, but in the quantum realm, scientists are exploring an array of properties once thought impossible.

In a new study, physicists at Brown University have now observed a novel class of quantum particles called fractional excitons, which behave in unexpected ways and could significantly expand scientists’ understanding of the .

“Our findings point toward an entirely new class of quantum particles that carry no overall charge but follow unique quantum statistics,” said Jia Li, an associate professor of physics at Brown.

Jan 9, 2025

Physicists achieve simulation of non-Hermitian skin effect in 2D with ultracold fermions

Posted by in categories: cosmology, particle physics, quantum physics

A research team led by The Hong Kong University of Science and Technology (HKUST) has achieved a groundbreaking quantum simulation of the non-Hermitian skin effect in two dimensions using ultracold fermions, marking a significant advance in quantum physics research.

Quantum mechanics, which typically considers a well-isolated system from its environment, describes ubiquitous phenomena ranging from electron behavior in solids to information processing in quantum devices. This description typically requires a real-valued observable—specifically, a Hermitian model (Hamiltonian).

The hermiticity of the model, which guarantees conserved energy with real eigenvalues, breaks down when a quantum system exchanges particles and energy with its environment. Such an open quantum system can be effectively described by a non-Hermitian Hamiltonian, providing crucial insights into , curved space, non-trivial topological phases, and even black holes. Nevertheless, many questions about non-Hermitian quantum dynamics remain unanswered, especially in higher dimensions.

Jan 9, 2025

Proximity effect enables non-ferroelectric materials to gain new properties

Posted by in categories: chemistry, computing, quantum physics

Ferroelectrics are special materials with polarized positive and negative charges—like a magnet has north and south poles—that can be reversed when external electricity is applied. The materials will remain in these reversed states until more power is applied, making them useful for data storage and wireless communication applications.

Now, turning a non-ferroelectric material into one may be possible simply by stacking it with another ferroelectric material, according to a team led by scientists from Penn State who demonstrated the phenomenon, called proximity ferroelectricity.

The discovery offers a new way to make without modifying their chemical formulation, which commonly degrades several useful properties. This has implications for next-generation processors, optoelectronics and quantum computing, the scientists said. The researchers published their findings in the journal Nature.

Jan 9, 2025

Simulations of supercooled liquid molecular dynamics may lead to higher-quality glass production at lower cost

Posted by in categories: computing, particle physics

Glass might seem to be an ordinary material we encounter every day, but the physics at play inside are actually quite complex and still not completely understood by scientists. Some panes of glass, such as the stained-glass windows in many medieval buildings, have remained rigid for centuries, as their constituent molecules are perpetually frozen in a state of disorder.

Similarly, supercooled liquids are not quite solid, in the sense that their fundamental particles do not stick to a lattice pattern with , but they are also not ordinary liquids, because the particles also lack the energy to move freely. More research is required to reveal the physics of these complex systems.

In a study published in Nature Materials, researchers from the Institute of Industrial Science, the University of Tokyo have used advanced computer simulations to model the behavior of in a glassy supercooled liquid. Their approach was based on the concept of the Arrhenius activation energy, which is the a process must overcome to proceed.

Page 21 of 12,346First1819202122232425Last