Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Simulations demonstrate potential mechanisms of intermediate-mass black hole formation in globular clusters

Joint research led by Michiko Fujii of the University of Tokyo demonstrates a possible formation mechanism of intermediate-mass black holes in globular clusters, star clusters that could contain tens of thousands or even millions of tightly packed stars.

Data-driven model generates natural human motions for virtual avatars

Humans can innately perform a wide range of movements, as this allows them to best tackle various tasks in their day-to-day life. Automatically reproducing these motions in virtual avatars and 3D animated human-like characters could be highly advantageous for many applications, ranging from metaverse spaces to digital entertainment, AI interfaces and robotics.

Researchers at Max Planck Institute for Intelligent Systems and ETH Zurich recently developed WANDR, a new model that can generate natural human motions for avatars. This model, to be introduced in a paper presented at the Conference on Computer Vision and Pattern Recognition (CVPR 2024) in June, unifies different data sources under a single model to attain more realistic motions in 3D humanoid characters. The paper is also posted to the arXiv preprint server.

“At a high-level, our research aims at figuring out what it takes to create able to behave like us,” Markos Diomataris, first author of the paper, told Tech Xplore. “This essentially means learning to reason about the world, how to move in it, setting goals and trying to achieve them.

‘Metaholograms’: Researchers develop a new type of hologram

This innovation has the potential to significantly improve AR/VR displays by enabling the projection of more complex and realistic scenes. It also holds promise for applications in image encryption, where the information is encoded into multiple holographic channels for enhanced security.

The research is a significant step forward in developing high-performance metaholograms with a vastly increased information capacity. This study paves the way for exciting new possibilities in various fields, from advanced displays to information encryption and .

Violence and aggression against educators grew post-pandemic, survey says

While threats and violence against pre-K to 12th-grade teachers and other school personnel in the United States declined during the pandemic, after the restrictions were lifted, incidents rebounded to levels equal to or exceeding those prior to the pandemic, according to research published in American Psychologist.

As a result, the percentage of teachers expressing intentions to resign or transfer rose from 49% during the pandemic to 57% afterward, the researchers found.

“Aggression and violence against educators and are major concerns that affect the well-being of school personnel and the students and families they serve. This study highlights a growing crisis in our schools that needs to be addressed nationally,” said lead author Susan Dvorak McMahon, Ph.D., of DePaul University, chair of the APA Task Force on Violence Against Educators and School Personnel. The conducted two surveys in collaboration with national education and related organizations.

New device precisely controls photon emission for more efficient portable screens

Recently, a team of chemists, mathematicians, physicists and nano-engineers at the University of Twente in the Netherlands developed a device to control the emission of photons with unprecedented precision. This technology could lead to more efficient miniature light sources, sensitive sensors, and stable quantum bits for quantum computing.

Maximizing DNA Yield for Biobanking Applications

With advances in genomics research, personalized medicine, and sequencing-based technologies, there is a necessity for purification of high-quality genomic DNA from large volumes of blood. The rapidly growing landscape of biorepositories that store large amounts of DNA from an enormous number of biospecimens further fuels this need to find optimized solutions for reliable purification of DNA. The information derived from the purified DNA is crucial to health science research and facilitates drug discovery, biomarker discovery, clinical implementation projects, etc. For the success of these analyses and to derive relevant information, DNA extraction is the most critical step and must meet the criteria of extraction speed, yield and quality, as well as reproducibility. Many nucleic acid purification kits and automation workflows for processing blood samples in the volume range of 100–250 μL exist, but not many convenient, automated options exist for volumes as high as 2 mL without sample splitting. To fill this opening, Omega Bio-tek has developed a semi-automated solution on the MagBinder® Fit24 to extract DNA from large volumes of fresh or frozen blood. Here, we provide background information on biobanks, as well as present the solution Omega Bio-tek has developed for DNA extraction from large volumes of whole blood.

A biobank is a specialized repository that systematically collects, processes, stores, and manages biological samples for use in medical research and treatments. The primary purpose of a biobank is to provide a centralized and organized resource of high-quality biological materials, such as blood or tissue, along with relevant clinical and demographic data1. These invaluable assets are at the center of advancements in cancer treatments, biomarker discovery, and understanding genetic factors for disease. At a high level, biobanks can be classified by two categories1: