Toggle light / dark theme

Amid a rise in the innovation of wearable technology, researchers are looking for ways to harness the adaptive sensing ability of the human body.

A recent University of Melbourne panel discussion covered the future of wearable sensors. Professor Graham Kerr, Bill Dimopoulos, Galen Gan and Professor Peter Lee considered the management of information generated from such technology and its interpretation for improving health.

Let’s kick off the Holiday Season in style, shall we? Like, say, with a single few people even know exist, from a massive pop culture phenomenon of the early ’80s? YES PLEASE! This really needs no introduction. It’s KITT, the Amazing Car of Tomorrow, in full hero mode, Saving Santa from bad weather, and then making the rounds to bring joy and cheer on Christmas Morning — All told in an early ’80s rap, over an electro groove lifted from the Knight Rider theme song. Hopefully you’ve already hit play, but if you haven’t yet, HIT PLAY NOW! And if you have, then PLAY IT AGAIN! And of course, I’d like to wish you all a Verry Merry Christmas! Like it? Subscribe! Follow me at / djmikebrady I don’t own any of the rights associated with this music, I simply share so that it will be heard. #PlayingRecords #NeedleDrop #RecordCollection

If you gaze at the vast galaxies filled with countless stars, it’s easy to assume they are star factories, churning out brilliant balls of gas. However, it’s the less evolved dwarf galaxies dwarf galaxies have bigger regions of star factories, with higher rates of star formation.

Recent findings by researchers from the University of Michigan shed light on this phenomenon: Dwarf galaxies experience a delay of about 10 million years before they expel the gas congesting their space. This delay allows star-forming regions in these galaxies to retain their gas and dust longer, fostering the formation and development of more stars.

Over the past few years, engineers have been trying to devise alternative hardware designs that would allow a single device to both perform computations and store data. These emerging electronics, known as computing-in-memory devices, could have numerous advantages, including faster speeds and enhanced data analysis capabilities.

To store data safely and retain a , these devices should be based on with advantageous properties and that can be scaled down in terms of thickness. Two-dimensional (2D) semiconductors that exhibit a property known as sliding ferroelectricity have been found to be promising candidates for realizing computing-in-memory, yet attaining the necessary switchable electric polarization in these materials can prove difficult.

Researchers at National Taiwan Normal University, Taiwan Semiconductor Research Institute, National Yang Ming Chiao Tung University and National Cheng Kung University recently devised an effective strategy to achieve a switchable electric polarization in molybdenum disulfide (MoS2). Using this method, outlined in a Nature Electronics paper, they ultimately developed new promising ferroelectric transistors for computing-in-memory applications.

TL;DR: a warp trip will show up on a gravitational detector because the space ship’s mass instantly disappears and later re-appears somewhere else.

There is some interesting foundational research [ALC] into faster than light [FTL] travel, but by everything these theories tell us, the ingredients for such modes of transportation aren’t available in the universe. FTL should be possible because the universe expands [EXP] at speeds greater than that of light, as [EXP] eloquently states: “galaxies that are farther than the Hubble radius, approximately 4.5 gigaparsecs or 14.7 billion light-years, away from us have a recession speed that is faster than the speed of light”

Since it is unclear whether the material needed for an FTL drive will ever be available, funding research in that direction could be a waste of resources, unless synergies emerge. In the spirit of respecting taxpayer’s money, I think FTL research should try to exploit – and generate – synergies with other fields of research.