Toggle light / dark theme

An international research group has engineered a novel, high-strength flexible device by combining piezoelectric composites with unidirectional carbon fiber (UDCF), an anisotropic material that provides strength only in the direction of the fibers. The new device transforms kinetic energy from human motion into electricity, providing an efficient and reliable means for high-strength and self-powered sensors.

Details of the group’s research were published in the journal Small on Dec.14, 2023.

Motion diction involves converting energy from human motion into measurable electrical signals and is something that may be crucial for ensuring a .

In 2015, the LIGO/Virgo experiment, a large-scale research effort based at two observatories in the United States, led to the first direct observation of gravitational waves. This important milestone has since prompted physicists worldwide to devise new theoretical descriptions for the dynamics of blackholes, building on the data collected by the LIGO/Virgo collaboration.

Researchers at Uppsala University, University of Oxford, and Université de Mons recently set out to explain the dynamics of Kerr black holes, theoretically predicted black holes that rotate at a constant rate, using theory of massive high-spin particles. Their paper, published in Physical Review Letters, specifically proposes that the dynamics of these rotating black holes is constrained by the principle of gauge symmetry, which suggests that some changes of parameters of a physical system would have no measurable effect.

“We pursued a connection between rotating Kerr black holes and massive higher-spin particles,” Henrik Johansson, co-author of the paper, told Phys.org. “In other words, we modeled the black hole as a spinning fundamental particle, similar to how the electron is treated in .”

Strain-induced crystallization can strengthen, toughen, and facilitate an elastocaloric effect in elastomers. The resulting crystallinity can be induced by mechanical stretching in common elastomers that are typically below 20%, with a stretchability plateau.

In a new report now published in Science Advances, Chase M. Hartquist and a team of scientists in and at MIT and Duke University in the U.S. used a class of elastomers formed by end-linking to achieve a percentage of strain-induced crystallinity.

The deswollen and end-linked star elastomer abbreviated as DELSE reached an ultrahigh stretchability to scale, beyond the saturated limit of common elastomers, to promote a high elastocaloric effect with an adiabatic temperature change.

An international team of astronomers has employed a set of space telescopes to observe a peculiar nuclear transient known as AT 2019avd. Results of the observational campaign, presented in a paper published December 21 on the pre-print server arXiv, deliver important insights into the properties and behavior of this transient.

Nuclear astrophysics is key to understanding supernova explosions, and in particular the synthesis of the chemical elements that evolved after the Big Bang. Therefore, detecting and investigating nuclear transient events could be essential in order to advance our knowledge in this field.

At a redshift of 0.028, AT 2019avd is a peculiar nuclear transient discovered by the Zwicky Transient Facility (ZTF) in 2009. The transient has been detected in various wavelengths, from radio to soft X-rays, and has recently exhibited two continuous flaring episodes with different profiles, spanning over two years.

Scientists at the Johns Hopkins University School of Medicine and the National Institutes of Health have identified a protein in the visual system of mice that appears to be key for stabilizing the body’s circadian rhythms by buffering the brain’s response to light. The finding, published Dec. 5 in PLoS Biology, advances efforts to better treat sleep disorders and jet lag, the study authors say.

“If adjusted to every rapid change in illumination, say an eclipse or a very dark and rainy day, they would not be very effective in regulating such periodic behaviors as sleep and hunger. The protein we identified helps wire the brain during neural development to allow for stable responses to circadian rhythm challenges from day to day,” says Alex Kolodkin, Ph.D., professor in the Johns Hopkins Department of Neuroscience and deputy director for the Institute for Basic Biomedical Sciences.

Kolodkin co-led the study with Samer Hattar, Ph.D., chief of the Section on Light and Circadian Rhythms at the National Institute of Mental Health.

Charging quantum batteries in indefinite causal order. In the classical world, if you tried to charge a battery using two chargers, you would have to do so in sequence, limiting the available options to just two possible orders. However, leveraging the novel quantum effect called ICO opens the possibility to charge quantum batteries in a distinctively unconventional way. Here, multiple chargers arranged in different orders can exist simultaneously, forming a quantum superposition. ©2023 Chen et al. CC-BY-ND

Batteries that exploit quantum phenomena to gain, distribute and store power promise to surpass the abilities and usefulness of conventional chemical batteries in certain low-power applications. For the first time, researchers including those from the University of Tokyo take advantage of an unintuitive quantum process that disregards the conventional notion of causality to improve the performance of so-called quantum batteries, bringing this future technology a little closer to reality.

When you hear the word “quantum,” the physics governing the subatomic world, developments in quantum computers tend to steal the headlines, but there are other upcoming quantum technologies worth paying attention to. One such item is the quantum battery which, though initially puzzling in name, holds unexplored potential for sustainable energy solutions and possible integration into future electric vehicles. Nevertheless, these new devices are poised to find use in various portable and low-power applications, especially when opportunities to recharge are scarce.

If you were exposed to the harsh depths of space, you’d lose consciousness in 15 seconds, and be dead within 30 seconds to 1 minute.

But what if you’re wearing an advanced powerful spacesuit? Well, that would buy you about 6 hours before your oxygen runs out, and then you’d still be dead.

So what would happen to your body? Would someone come to retrieve it? Or would it just keep floating through space forever?

Transcript and sources: https://insh.world/science/what-if-yo… possible with the support of Ontario Creates http://www.ontariocreates.ca Watch more what-if scenarios: Planet Earth: • What If Earth Was in Fact Flat? The Cosmos: • Video Technology: • What If the Sahara Desert Was Covered… Your Body: • What If You Were Born on a Space Stat… Humanity: • What If You Were the Last Person on E… About What If: Produced by Underknown in Toronto, Canada, What If is a mini-documentary web series that takes you on an epic journey through hypothetical worlds and possibilities. Join us on an imaginary adventure — grounded in scientific theory — through time, space and chance, as we ask what if some of the most fundamental aspects of our existence were different. Follow what-if on Instagram for bonus material: / what.if.show Suggest an episode: http://bit.ly/suggest-whatif Follow the show on Facebook Watch: / what.if.science “Imagination will often carry us to worlds that never were. But without it, we go nowhere.” — Carl Sagan Feedback, inquiries and suggestions: https://underknown.com/contact.

Check out https://NordVPN.com/coolworlds for 4 months for free when you sign up today, thanks to Nord for sponsoring us!

Could there be a bizarre exotic type of star out there made of quarks? What would these things be like and how could they form? Join us as we explore quark stars, and the terrifying implications they have for forging strange matter within their cores…

Written & presented by Prof. David Kipping. Edited by Jorge Casas. Special thanks to Dr Sam Gregson (/ @badboyofscience) for fact checking our script.

→ Support our research: https://www.coolworldslab.com/support.

The question of whether artificial intelligence could ever achieve consciousness is a common theme in science fiction. Could robots ever truly feel anything—like love, hate, or fear—or would they be all “dark inside”, experiencing nothing at all?

It is more important than ever to answer this question correctly. Artificial intelligence (AI) is no longer merely a matter of science fiction. AI are increasingly capable of producing art and mastering the use of language, raising serious questions about whether AI are already capable of consciousness, or if not yet, then soon.