Toggle light / dark theme

Britain’s largest telecom service provider has put forward a plan to ensure that EVs are always within range of a charger. To do that, they’re planning to retrofit their existing street cabinets into publicly accessible L2 chargers.

Retrofitting a city’s existing electronic and digital infrastructure to promote widespread adoption of EVs isn’t a new idea — but UK telecom giant BT Group isn’t content to just talk about what’s possible. They’ve already done it!

The first such telecom cabinet-to-L2 charger conversion has already been completed in East Lothian, Scotland, and BT Group isn’t stopping there. The company says it plans to convert more cabinets in Scotland, England, Wales, and Northern Ireland in the coming months, with as many as 600 such conversions earmarked for completion by the end of 2024.

I’m excited to share my latest Opinion article on AI at The Hill, a top political site/paper read by the White House and Congress:


Regardless what politicians promise, this age of AI and robots will also affect the size and growth rates of the U.S. government. Federal and state government may not immediately take up with automation and AI to the extent the private sector does, but eventually the stark rationality of lower overhead expenses—and thus lower taxes for citizens—will prevail.

This is a good thing. A smaller, nimble, more efficient government will benefit the majority of people.

Zoltan Istvan writes and speaks on transhumanism, artificial intelligence, and the future. He is the author of “The Transhumanist Wager,” and is the subject of the forthcoming biography by Dr. Ben Murnane and Changemakers Books titled, “Transhuman Citizen: Zoltan Istvan’s Hunt for Immortality.”

To create the breakthrough model, researchers integrated two cutting-edge #AI techniques for the first time in the fields of #bioinformatics and #Cheminformatics : the well-known “Encoder-Decoder Transformer architecture” and “Reinforcement Learning via Monte Carlo Tree Search” (RL-MCTS).


Generative artificial intelligence platforms, from ChatGPT to Midjourney, grabbed headlines in 2023. But GenAI can do more than create collaged images and help write emails—it can also design new drugs to treat disease.

Today, scientists use advanced technology to design new synthetic drug compounds with the right properties and characteristics, also known as “de novo drug design.” However, current methods can be labor-, time-, and cost-intensive.

Inspired by ChatGPT’s popularity and wondering if this approach could speed up the drug design process, scientists in the Schmid College of Science and Technology at Chapman University in Orange, California, decided to create their own GenAI model, detailed in a new paper, “De Novo Drug Design using Transformer-based Machine Translation and Reinforcement Learning of Adaptive Monte-Carlo Tree Search,” appearing in the journal Pharmaceuticals.

Two astrophysicists from the Laboratory for Space Research (LSR) at the University of Hong Kong (HKU) have finally solved a 20-year-old astrophysical puzzle concerning the lower-than-expected amounts of the element sulfur found in planetary nebulae (PNe) in comparison to expectations and measurements of other elements and other types of astrophysical objects.

The expected levels of have long appeared to be “missing in action.” However, they have now finally reported for duty after hiding in plain sight, as a result of leveraging highly accurate and reliable data. The team has recently reported their findings in The Astrophysical Journal Letters.

PNe are the short-lived glowing, ejected, gaseous shrouds of dying stars that have long fascinated and enthused professional and amateur astronomers alike with their colorful and varied shapes. PNe live for only a few tens of thousands of years compared to their host stars, which can take billions of years before they pass through the PN phase on the way to becoming white dwarfs.

Researchers have successfully extended the lifespan of time crystals, confirming a theoretical concept proposed by Frank Wilczek. This marks a significant step forward in quantum physics.

A team from TU Dortmund University recently succeeded in producing a highly durable time crystal that lived millions of times longer than could be shown in previous experiments. By doing so, they have corroborated an extremely interesting phenomenon that Nobel Prize laureate Frank Wilczek postulated around ten years ago and which had already found its way into science fiction movies. The results have now been published in Nature Physics.

Groundbreaking achievement in time crystal research.

Futuristic advancements in AI and healthcare stole the limelight at the tech extravaganza Consumer Electronics Show (CES) 2024. However, battery technology is the game-changer at the heart of these innovations, enabling greater power efficiency. Importantly, electric vehicles are where this technology is being applied most intensely. Today’s EVs can travel around 700km on a single charge, while researchers are aiming for a 1,000km battery range.

Researchers are fervently exploring the use of silicon, known for its high storage capacity, as the anode material in lithium-ion batteries for EVs. However, despite its potential, bringing silicon into practical use remains a puzzle that researchers are still working hard to piece together.

Enter Professor Soojin Park, PhD candidate Minjun Je, and Dr. Hye Bin Son from the Department of Chemistry at Pohang University of Science and Technology (POSTECH). They have cracked the code, developing a pocket-friendly and rock-solid next-generation high-energy-density Li-ion battery system using micro silicon particles and gel polymer electrolytes.