Toggle light / dark theme

After a year of record electric vehicle sales, waves of people are spending their first winter with an all-electric car for the first time. They’d do well to pay attention to these five tips for charging in cold weather from the Electrify America charging network.

EVs, just like any other vehicles, operate the best in a certain window of temperatures, outside of which their energy consumption range or charging might be negatively affected.

An international research team led by the Max Planck Institute for Astronomy (MPIA) and involving the University of Bonn has mapped the cold, dense gas of future star nurseries in one of our neighboring galaxies with an unprecedented degree of detail. The data will enable the researchers for the first time to mount an in-depth study of the conditions that exist within the gas during the early stages of star formation outside the Milky Way at the scale of individual star-forming regions.

Their findings have now been published in Astronomy & Astrophysics.

Paradoxically, hot stars begin to form in some of the coldest regions of the universe, specifically in thick clouds of gas and dust that straddle entire galaxies. “To investigate the early phases of star formation, where gas gradually condenses to eventually produce stars, we must first identify these regions,” says Sophia Stuber, a doctoral student at the MPIA in Heidelberg and the first author of the research paper.

A common carbon compound is enabling remarkable performance enhancements when mixed in just the right proportion with copper to make electrical wires. It’s a phenomenon that defies conventional wisdom about how metals conduct electricity.

The findings, reported in the journal Materials & Design, could lead to more efficient electricity distribution to homes and businesses, as well as more efficient motors to power electric vehicles and industrial equipment. The team has applied for a patent for the work, which was supported by the Department of Energy (DOE) Advanced Materials and Manufacturing Technologies Office.

Materials scientist Keerti Kappagantula and her colleagues at DOE’s Pacific Northwest National Laboratory discovered that graphene, single layers of the same graphite found in pencils, can enhance an important property of metals called the temperature coefficient of resistance.