Toggle light / dark theme

Jupiter’s moon Io is the most volcanically active body in our Solar System, with around 400 volcanoes and extensive lava flows spread across its surface – but contrary to what scientists thought, a new study suggests this geological chaos is not powered by a global, moonwide ocean of magma below the surface.

Using images snapped by NASA’s Juno spacecraft, gravitational measurements, and historical data about Io’s tidal deformations, an international team of researchers has determined that the moon’s volcanoes are powered by a scattering of magma chambers in an otherwise solid mantle.

The findings counter previous theories about how Io’s volcanoes are powered, and point to a mostly solid mantle for the moon. With magma oceans believed to be present on many worlds, especially early in their formation – including our own Moon – we may need to rethink how planets form and evolve.

Einstein’s theory of gravity, general relativity, has passed all tests with predictions that are spot-on. One prediction that remains is “gravitational wave memory”—the prediction that a passing gravitational wave will permanently change the distance between cosmic objects.

Supernovae—collapsing stars that explode outward—are thought to be generators of , though none have yet been definitively detected by the gravitational wave interferometers on Earth. Nor has the gravitational wave memory effect been seen, from mergers or supernovae, due to the limited sensitivity of interferometers below wave frequencies of 10 hertz.

But now a new study presents an approach to detecting the effect using currently existing gravitational wave observatories. The paper is published in Physical Review Letters.

A group of Brazilian researchers has presented an innovative proposal to resolve a decades-old debate among theoretical physicists: How many fundamental constants are needed to describe the observable universe? Here, the term “fundamental constants” refers to the basic standards needed to measure everything.

The study is published in the journal Scientific Reports.

The group argues that the number of fundamental constants depends on the type of in which the theories are formulated; and that in a relativistic space-time, this number can be reduced to a single constant, which is used to define the standard of time. The study is an original contribution to the controversy sparked in 2002 by a famous article by Michael Duff, Lev Okun and Gabriele Veneziano published in the Journal of High Energy Physics.

Microgravity is known to alter the muscles, bones, the immune system and cognition, but little is known about its specific impact on the brain. To discover how brain cells respond to microgravity, Scripps Research scientists, in collaboration with the New York Stem Cell Foundation, sent tiny clumps of stem-cell derived brain cells called “organoids” to the International Space Station (ISS).

Surprisingly, the organoids were still healthy when they returned from orbit a month later, but the cells had matured faster compared to identical organoids grown on Earth—they were closer to becoming adult neurons and were beginning to show signs of specialization. The results, which could shed light on potential neurological effects of space travel, appear in Stem Cells Translational Medicine.

“The fact that these cells survived in space was a big surprise,” says co-senior author Jeanne Loring, Ph.D., professor emeritus in the Department of Molecular Medicine and founding director of the Center for Regenerative Medicine at Scripps Research. “This lays the groundwork for future experiments in space, in which we can include other parts of the brain that are affected by neurodegenerative disease.”

Researchers recently made a groundbreaking discovery on the nanoscale: a new type of quasiparticle found in all magnetic materials, no matter their strength or temperature. These new properties shake up what researchers previously knew about magnetism, showing it’s not as static as once believed.

“Emergent topological quasiparticle kinetics in constricted nanomagnets,” was published in Physical Review Research. The researchers include Deepak Singh and Carsten Ullrich from the University of Missouri’s College of Arts and Science, along with their teams of students and postdoctoral fellows.

“We’ve all seen the bubbles that form in sparkling water or other carbonated drink products,” said Ullrich, Curators’ Distinguished Professor of Physics and Astronomy. “The quasiparticles are like those bubbles, and we found they can freely move around at remarkably fast speeds.”

Caltech researchers have quantified the speed of human thought: a rate of 10 bits per second. However, our bodies’ sensory systems gather data about our environments at a rate of a trillion bits per second, which is 100 million times faster than our thought processes. This new study raises major new avenues of exploration for neuroscientists, in particular: Why can we only think one thing at a time while our sensory systems process thousands of inputs at once?

The research was conducted in the laboratory of Markus Meister, the Anne P. and Benjamin F. Biaggini Professor of Biological Sciences, and it was led by graduate student Jieyu Zheng. A paper describing the study appears in the journal Neuron.

A bit is a basic unit of information in computing. A typical Wi-Fi connection, for example, can process 50 million bits per second. In the new study, Zheng applied techniques from the field of information theory to a vast amount of scientific literature on human behaviors such as reading and writing, playing video games, and solving Rubik’s Cubes, to calculate that humans think at a speed of 10 bits per second.

Pain is meant to be a defense mechanism. It creates a strong sensation to get us to respond to a stimulus and prevent ourselves from further harm. But, sometimes injuries, nerve damage, or infections can cause long-lasting, severe bouts of pain that can make daily life unbearable.

What if there was a way to simply turn off ? UNC School of Medicine researchers Bryan L. Roth, MD, Ph.D., the Michael Hooker Distinguished Professor of Pharmacology, and Grégory Scherrer, PharmD, Ph.D., associate professor of cell biology and physiology and the UNC Neuroscience Center, have just proven that it is possible.

Using a tool designed by Roth in the early 2000s, the labs have created a new system that reduces acute and tissue-injury-induced inflammatory in mouse models. Hye Jin Kang, Ph.D., an alumnus of the Roth Lab and now associate professor at Yonsei University in Korea, was first author on the research paper. The results were published in Cell.

Could complex beliefs like paranoia have roots in something as basic as vision? A new Yale study finds evidence that they might.

When completing a visual perception task, in which participants had to identify whether one moving dot was chasing another moving dot, those with greater tendencies toward paranoid thinking (believing others intend them harm) and teleological thinking (ascribing excessive meaning and purpose to events) performed worse than their counterparts, the study found. Those individuals more often—and confidently—claimed one dot was chasing the other when it wasn’t.

The findings, published in the journal Communications Psychology, suggest that in the future, testing for illnesses like schizophrenia could be done with a simple eye test.

Leveraging the principles of quantum mechanics, quantum computers can perform calculations at lightning-fast speeds, enabling them to solve complex problems faster than conventional computers. In quantum technology applications such as quantum computing, light plays a central role in encoding and transmitting information.

NTU researchers have recently made breakthroughs in manipulating light that could potentially usher in the era of . Details of this research have been published in Nature Photonics, Physical Review Letters, and Nature Communications.