Toggle light / dark theme

Tesla owners might soon be able to control their car using their Apple Watch, at least if Elon Musk is to be believed. In response to a question on social media about whether Tesla could add Apple Watch integration, Musk responded: “Sure.”

Whether Tesla follows through on this remains to be seen. There’s no timeline on when the feature might be added. In fact, it sounds like this wasn’t something in the works until Musk responded to this particular social media post.

Ideally, Tesla’s app for Apple Watch would allow Tesla owners to unlock their car and do things like precondition the cabin, enable/disable Sentry mode, remote start their car, and more. But again, Tesla hasn’t confirmed anything about what to actually expect.

Explore courses in mathematics, science, and computer science with Brilliant. First 200 to use our link https://brilliant.org/sabine will get 20% off the annual premium subscription.

Memory storage technology has come a long way from compact disks. Or has it? In a recent paper, scientists report they were able to fit petabytes of memory onto a compact disk using new laser technologies and advanced material design. Is this the future of data storage? Let’s have a look.

🤓 Check out my new quiz app ➜ http://quizwithit.com/
💌 Support me on Donatebox ➜ https://donorbox.org/swtg.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
👉 Transcript with links to references on Patreon ➜ / sabine.
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
🖼️ On instagram ➜ / sciencewtg.

#science #sciencenews #technews #tech #technology

Toyota is boosting its ability to mass-produce “a wide variety” of EV batteries following an agreement with Panasonic to take full control of Primearth EV Energy (PEVE). The move will help Toyota respond to the growing demand for batteries.

The automaker agreed with Panasonic to make Primearth EV Energy a wholly owned subsidiary Tuesday.

Toyota said the acquisition will strengthen its ability to mass produce EV batteries. It is officially scheduled for later this month.

We’ve been hearing a lot of rumors about Apple working on multiple foldable devices. While most of them refer to devices similar to Samsung’s Galaxy Z Fold and Z Flip, analyst Ming-Chi Kuo has now reported that Apple has been actively working on a foldable MacBook.

Details about this future foldable MacBook are unclear at this point. However, Kuo says that the device will have a 20.3-inch screen. According to the analyst, this new MacBook is Apple’s only foldable device “with a clear development schedule,” suggesting that the company’s plans to launch a foldable iPhone or iPad are still quite experimental.

“Recently, I’ve received many inquiries about whether Apple plans to mass-produce the foldable iPhone or iPad in 2025 or 2026. My latest survey indicates that currently, Apple’s only foldable product with a clear development schedule is the 20.3-inch MacBook, expected to enter mass production in 2027,” Kuo said in a post on X.

Quantum computers, which can solve several complex problems exponentially faster than classical computers, are expected to improve artificial intelligence (AI) applications deployed in devices like autonomous vehicles; however, just like their predecessors, quantum computers are vulnerable to adversarial attacks.

A team of University of Texas at Dallas researchers and an industry collaborator have developed an approach to give quantum computers an extra layer of protection against such attacks. Their solution, Quantum Noise Injection for Adversarial Defense (QNAD), counteracts the impact of attacks designed to disrupt inference—AI’s ability to make decisions or solve tasks.

The team will present research that demonstrates the method at the IEEE International Symposium on Hardware Oriented Security and Trust held May 6–9 in Washington, D.C.

The next generation of wireless communication not only requires greater bandwidth at higher frequencies – it also needs a little extra time.

Cornell researchers have developed a semiconductor chip that adds a necessary time delay so signals sent across multiple arrays can align at a single point in space, and without disintegrating. The approach will enable ever-smaller devices to operate at the higher frequencies needed for future 6G communication technology.

The team’s paper, “Ultra-Compact Quasi-True-Time-Delay for Boosting Wireless Channel-Capacity,” published March 6 in Nature. The lead author is Bal Govind, a doctoral student in electrical and computer engineering.