Menu

Blog

Page 2134

Dec 22, 2023

Chinese Spacecraft Emitting Strong Signal Over North America

Posted by in category: space

Interesting read. Are they spying on the West Coast or just running experiments? That’s a good space plane at the very least. 3 launches in 3 years.


Earlier this week, China’s top-secret spaceplane, dubbed Shenlong released six mysterious objects after reaching the Earth’s orbit for the third time in three years.

We can only hazard a guess as to what these objects — which are being tracked by the US Space Force and designated the names OBJECT A through F by the US Department of Defense — are, or what their purpose is.

Continue reading “Chinese Spacecraft Emitting Strong Signal Over North America” »

Dec 21, 2023

QEDMA as an enabler for quantum computing

Posted by in categories: computing, quantum physics

Dec 21, 2023

Influx of nitrogen-rich material from the outer Solar System indicated by iron nitride in Ryugu samples

Posted by in categories: particle physics, space

Iron nitride (Fe4N) is detected on magnetite particles within the Ryugu sample returned by Hayabusa2. It is probably the product of impacts of nitrogen-rich dust from the outer Solar System on the surface of Ryugu, indicative of a flux of N-rich dust in the inner Solar System.

Dec 21, 2023

Photonic signal processor based on a Kerr microcomb for real-time video image processing

Posted by in categories: biotech/medical, information science, robotics/AI

Signal processing is key to communications and video image processing for astronomy, medical diagnosis, autonomous driving, big data and AI. Menxi Tan and colleagues report a photonic processor operating at 17Tb/s for ultrafast robotic vision and machine learning.

Dec 21, 2023

New, super-smart hardware could provide drastic cuts in power consumption

Posted by in category: computing

Greener data processing requires systems that work smarter, faster, and are more energy efficient. Researchers from the Norwegian University of Science and Technology (NTNU) have developed a tiny piece of super-smart hardware that enables all of the above.

Anyone who knows anything about running knows that they take time, and everyone wants the program they are running to work as quickly as possible.

A new, tiny piece of hardware designed by can be integrated into processors, which are the computer’s brains, making it easier for developers to write programs that run faster and more efficiently.

Dec 21, 2023

Research team develops analog hardware solution for real-time compressed sensing recovery in one step

Posted by in categories: biotech/medical, computing

A research team led by Prof. Sun Zhong at Peking University has reported an analog hardware solution for real-time compressed sensing recovery. It has been published as an article titled, “In-memory analog solution of compressed sensing recovery in one step” in Science Advances.

In this work, a design based on a resistive memory (also known as memristor) array for performing instantaneous matrix-matrix-vector multiplication (MMVM) is introduced. Based on this module, an analog matrix computing circuit that solves compressed sensing (CS) in one step (within a few microseconds) is disclosed.

CS has been the cornerstone of modern signal and , across many important fields such as , wireless communications, object tracking, and single-pixel cameras. In CS, sparse signals can be highly undersampled in the front-end sensor, which breaks through the Nyquist rate and thus significantly improving sampling efficiency.

Dec 21, 2023

IBM debuts next-gen quantum processor and IBM quantum system two, extends roadmap to advance quantum utility

Posted by in categories: quantum physics, supercomputing

At the annual IBM Quantum Summit in New York, IBM debuted IBM Quantum Heron, the first in a new series of utility-scale quantum processors with an architecture engineered over the past four years to deliver IBM’s highest performance metrics and lowest error rates of any IBM Quantum processor to date.

IBM also unveiled IBM Quantum System Two, the company’s first modular quantum computer and cornerstone of IBM’s quantum-centric supercomputing architecture. The first IBM Quantum System Two, located in Yorktown Heights, New York, has begun operations with three IBM Heron processors and supporting control electronics.

Continue reading “IBM debuts next-gen quantum processor and IBM quantum system two, extends roadmap to advance quantum utility” »

Dec 21, 2023

Galileo Second Generation satellite aces first hardware tests

Posted by in category: satellites

The new Galileo satellite model from Thales Alenia Space underwent mechanical and signal performance testing this summer at ESA’s ESTEC Test Center. Structural models resisted launch-like noise and vibrations while an electrical model proved its ability to send Galileo signals—a major milestone in the development of Galileo’s Second Generation.

Europe’s Galileo is the world’s most precise navigation system, providing meter-level accuracy to more than 4 billion users worldwide. It currently comprises 28 satellites in orbit and 10 more are due to be launched, after which a new generation of satellites, the Galileo Second Generation or G2, will revolutionize the fleet with enhanced capabilities.

“G2 satellites will be much larger than those of the First Generation, use , host a more powerful navigation antenna, carry more and even better atomic clocks on board and have fully digital payloads,” explains ESA’s Galileo Second Generation Project Manager Miguel Manteiga Bautista. “The modular architecture will offer a high degree of flexibility to accommodate more equipment and inter-satellite links will be enabled,” he adds.

Dec 21, 2023

Utility-Scale Quantum Program Advances Toward Prototyping

Posted by in categories: computing, government, quantum physics

DARPA’s Underexplored Systems for Utility-Scale Quantum Computing (US2QC) program seeks to determine whether an underexplored approach to quantum computing can achieve utility-scale operation — meaning its computational value exceeds its cost — faster than conventional predictions.

In the initial phase, each company presented a design concept describing their plans to create a utility-scale quantum computer. In the follow-on phase, selected performers aim to take their concepts to the next level. Now, US2QC’s key goal centers on developing and defending a system design for a fault-tolerant prototype, a smaller-scale quantum computer demonstrating that a utility-scale quantum computer can be constructed as designed and operated as intended.

This prototype system design will identify all required components and sub-systems and establish their minimum performance requirements. A DARPA-led government test and evaluation team consisting of technical experts will evaluate design viability.

Dec 21, 2023

DARPA picks 14 companies for lunar architecture study

Posted by in categories: economics, space

WASHINGTON — DARPA has selected 14 companies, ranging from small startups to established aerospace corporations, to participate in a study on developing commercial lunar infrastructure.

DARPA announced Dec. 5 that 14 companies will collaborate over the next seven months on its 10-Year Lunar Architecture, or LunA-10, study. The goal of the effort, announced in August, is to develop an integrated architecture to support a commercial lunar economy by the mid-2030s.

“LunA-10 has the potential to upend how the civil space community thinks about spurring widespread commercial activity on and around the Moon within the next 10 years,” Michael Nayak, DARPA program manager for LunA-10, said in a statement.