Toggle light / dark theme

Those hoping to avoid one of the worst side effects of aging—bone, joint and muscle pain that doesn’t go away—might need to exercise a lot harder and more often than previously believed.

According to a new study, only high levels of activity at least once a week—playing tennis, running, swimming, digging with a spade, or doing hard physical labor as part of your job—appears to help ward off chronic musculoskeletal pain in the long-term.

The study, led by Dr. Nils Niederstrasser at the University of Portsmouth, examined the data of 5,802 people aged 50 or more over ten years.

A 26-year-old man with a 1-week history of a rash on his hands and feet and fever had scattered, partially blanchable macules that had merged into erythematous patches on his hands and feet. Read the full clinical case from มหาวิทยาลัยเชียงใหม่ Chiang Mai University:


Images in Clinical Medicine from The New England Journal of Medicine — Papular–Purpuric “Gloves and Socks” Syndrome in Parvovirus B19 Infection.

Solar panels are already an affordable energy solution since they generate enough power over their lifetimes to pay for themselves and then some. However, they do take some investment up front, and some people (and homeowners associations) dislike the way they look.

So what if you could get that power to make electricity from sunlight without having to install solar panels? That’s the beauty of solar paint, as reported by Solar Action Alliance.

The idea behind solar paint (aka photovoltaic paint) is simple: It’d be like ordinary paint but with billions of light-sensitive particles mixed in, as Understand Solar notes.

Many organisms can produce minerals or mineralized tissue. A well-known example is nacre, which is used in jewelry because of its iridescent colors. Chemically speaking, its formation begins with a mollusk extracting calcium and carbonate ions from water. However, the exact processes and conditions that lead to nacre, a composite of biopolymers and platelets of crystalline calcium carbonate, are the subject of intense debate among experts, and different theories exist.

Researchers do agree that non-crystalline intermediates, such as amorphous calcium carbonate (ACC), play a crucial role in biomineralization. Lobsters and other crustaceans, for example, keep a supply of ACC in their stomachs, which they use to build a new shell after molting. In a recent study published in Nature Communications, researchers from the University of Konstanz and Leibniz University Hannover have now succeeded in deciphering the formation pathway of ACC.

Newcastle University research turns to ancient hot springs to explore the origins of life on Earth.

The research team investigated how the emergence of the first living systems from inert geological materials happened on Earth more than 3.5 billion years ago. Scientists at Newcastle University found that mixing hydrogen, bicarbonate, and iron-rich magnetite under conditions mimicking relatively mild hydrothermal vent results in forming a spectrum of , most notably including stretching up to 18 in length.

Published in the journal Communications Earth & Environment, their findings potentially reveal how some key molecules needed to produce life are made from inorganic chemicals, which is essential to understanding a key step in how life formed on the Earth billions of years ago.

Complexity of biological forms has fascinated humankind over the years. Different species of plants have different leaf shapes. Have you ever wondered why it is so? Why does this shape diversity exist? Plants can change their leaf shapes over time and space. But how?

Does the distinct of forms play a significant role in energy optimization? In fact, the shape of leaves has a lot to do with adapting to their surrounding environment. How is the unfolding of shape related to the evolutionary process of nature? These intriguing questions have led us to focus on quantitative approaches to the complexity of plant leaves.

Quantifying leaf shapes using Euclidean shapes, such as circles, triangles, etc., are appropriate to only a few . Therefore, various quantitative measures of leaf shapes have been developed with varying accuracy. But Is the shape of an object really its actual shape? Visual perception of definite shape or geometry of physical objects is only an abstraction.

Astronomers have completed the largest and most detailed study of what triggers stars to form in the universe’s biggest galaxies, using NASA’s Chandra X-ray Observatory and other telescopes. They were surprised to find that the conditions for stellar conception in these exceptionally massive galaxies have not changed over the last ten billion years.

“What’s surprising here is that there are lots of things that could have affected over the last ten billion years,” said Michael Calzadilla of the Massachusetts Institute of Technology (MIT) who led the study. “In the end, however, the main driver of star formation in these huge really comes down to one thing—whether or not the hot gas surrounding them can cool off quickly enough.”

Clusters of galaxies are the largest objects in the universe held together by gravity and contain huge amounts of hot gas seen in X-rays. The mass of this hot gas is several times the total mass of all the stars in all the hundreds of galaxies typically found in galaxy clusters.