Toggle light / dark theme

A collaborative research team co-led by Professor Shuang ZHANG, the Interim Head of the Department of Physics, The University of Hong Kong (HKU), along with Professor Qing DAI from National Center for Nanoscience and Technology, China, has introduced a solution to a prevalent issue in the realm of nanophotonics – the study of light at an extremely small scale. Their findings, recently published in the prestigious academic journal Nature Materials, propose a synthetic complex frequency wave (CFW) approach to address optical loss in polariton propagation. These findings offer practical solutions such as more efficient light-based devices for faster and more compact data storage and processing in devices such as computer chips and data storage devices, and improved accuracy in sensors, imaging techniques, and security systems.

Surface plasmon polaritons and phonon polaritons offer advantages such as efficient energy storage, local field enhancement, and high sensitivities, benefitting from their ability to confine light at small scales. However, their practical applications are hindered by the issue of ohmic loss, which causes energy dissipation when interacting with natural materials.

Over the past three decades, this limitation has impeded progress in nanophotonics for sensing, superimaging, and nanophotonic circuits. Overcoming ohmic loss would significantly enhance device performance, enabling advancement in sensing technology, high-resolution imaging, and advanced nanophotonic circuits.

China Telecom claims it has built the country’s first supercomputer constructed entirely with Chinese-made components and technology (via ITHome). Based in Wuhan, the Central Intelligent Computing Center supercomputer is reportedly built for AI and can train large language models (LLM) with trillions of parameters. Although China has built supercomputers with domestic hardware and software before, going entirely domestic is a new milestone for the country’s tech industry.

Exact details on the Central Intelligent Computing Center are scarce. What’s clear so far: The supercomputer is purportedly made with only Chinese parts; it can train AI models with trillions of parameters; and it uses liquid cooling. It’s unclear exactly how much performance the supercomputer has. A five-exaflop figure is mentioned in ITHome’s report, but to our eyes it seems that the publication was talking about the total computational power of China Telecom’s supercomputers, and not just this one.

The study shows that analyzing ancient organisms can help unravel the evolutionary history of life on Earth, Craig said.

“Positively identifying any fossil over a billion years old is inherently challenging. For example, the oldest dinosaur fossils are only about 250 million years old, and the ones in this study are almost seven times older,” he said. “That’s why research such as this is exceptionally difficult, but highly rewarding, and when conclusions such as the ones in this study can be reached with high confidence, it represents a significant discovery.”

For example, a video of a swinging pendulum would look the same if you played it backward. We see time as irreversible because of another law of nature, the second law of thermodynamics. This law says that the disorder in a system always increases. If the broken glass reassembled itself, the disorder would decrease.

The same law applies to the aging of materials. But physicists from Darmstadt have found out that this is not the case. They have discovered that the motion of molecules in glass or plastic can be reversed in time if you look at it from a special angle.

“It performs very well. Depending on where you’re looking at along the coast, it would be quite difficult to identify a simulated hurricane from a real one,” Pintar said.

However, the system isn’t without flaws. The data it is fed does not account for the potential effects of rising temperatures, and the simulated storms produced for areas with less data were not as plausible.

“Hurricanes are not as frequent in, say, Boston as in Miami, for example. The less data you have, the larger the uncertainty of your predictions,” NIST Fellow Emil Simiu said.

Collisions of high energy particles produce “jets” of quarks, anti-quarks, or gluons. Due to the phenomenon called confinement, scientists cannot directly detect quarks. Instead, the quarks from these collisions fragment into many secondary particles that can be detected.

Scientists recently addressed jet production using quantum simulations. They found that the propagating jets strongly modify the quantum vacuum—the with the lowest possible energy. In addition, the produced quarks retain quantum entanglement, the linkage between particles across distances. This finding, published in Physical Review Letters, means that scientists can now study this entanglement in experiments.

This research performed that have detected the modification of the vacuum by the propagating jets. The simulations have also revealed quantum entanglement among the jets. This entanglement can be detected in nuclear experiments. The work is also a step forward in quantum-inspired classical computing. It may result in the creation of new application-specific integrated circuits.

“The memory requirements for PRIYA simulations are so big you cannot put them on anything other than a supercomputer,” Bird said.

TACC awarded Bird a Leadership Resource Allocation on the Frontera supercomputer. Additionally, analysis computations were performed using the resources of the UC Riverside High-Performance Computer Cluster.

The PRIYA simulations on Frontera are some of the largest cosmological simulations yet made, needing over 100,000 core-hours to simulate a system of 30723 (about 29 billion) particles in a ‘box’ 120 megaparsecs on edge, or about 3.91 million light-years across. PRIYA simulations consumed over 600,000 node hours on Frontera.