Menu

Blog

Page 2046

Aug 2, 2023

Decoding the Mysteries of the “Wonder Material” Graphene Through Rainbow Scattering

Posted by in categories: materials, particle physics

New research uses protons to shine a light on the structure and imperfections of this two-dimensional wonder material.

Graphene is a two-dimensional wonder material that has been suggested for a wide range of applications in energy, technology, construction, and more since it was first isolated from graphite in 2004.

This single layer of carbon atoms is tough yet flexible, light but with high resistance, with graphene.

Aug 2, 2023

The Global Workspace Theory of Consciousness

Posted by in category: neuroscience

Global Workspace Theory (GWT) can be compared to a theater of mind, in which conscious contents resemble a bright spot on the stage of immediate memory, selected by a spotlight of attention under executive guidance. Only the bright spot is conscious; the rest of the theater is dark and unconscious. GWT has been implemented in a number of explicit and testable global workspace models (GWM’s). These specific GW models suggest that conscious experiences recruit widely distributed brain functions that are mostly unconscious (unreportable). A large body of new findings support that view. For example, brain experiments show that while unconscious visual stimuli evoke high activity in visual cortex, identical conscious stimuli reveal an additional spread of high brain activity to frontal and parietal lobes (Dehaene, 2001). Similar results have been found for hearing, touch, pain, and sensorimotor skills (Baars, 2002). The conscious waking state supports such fast, flexible, and widespread brain interactions, while unconscious states do not (Baars et al, 2004). These findings illustrate the ability of the GW framework to suggest novel and falsifiable hypotheses.

Aug 2, 2023

Global Workspace Theory (GWT) and Prefrontal Cortex: Recent Developments

Posted by in category: neuroscience

In this work, we provide a brief overview of Global Workspace Theory (GWT), along with recent developments and clarifications of modern neuroscientific evidence. GWT started in the 1980s as a purely psychological theory of conscious cognition, and has become a prominent approach in scientific studies of consciousness (Mashour et al., 2020). Based on today’s far more detailed understanding of the brain, GWT has adapted to new waves of evidence. The brain-based version of GWT is called Global Workspace Dynamics (GWD) (Baars et al., 2013; Baars and Geld, 2019) precisely because the cortex is viewed as a “unified oscillatory machine” (Steriade, 1999). GWT therefore joins other theories in viewing consciousness as the product of highly integrated and widespread cortico-thalamic (C-T) activity, following a long trail of evidence (Dehaene et al., 1998).

Here we aim to clarify some empirical questions that have been raised, and review evidence that the prefrontal and posterior regions support dynamic global workspace functions, in agreement with several other authors. Static, gross anatomical divisions are superseded by the dynamical connectome of cortex.

We aim to correct the following misunderstandings. In a recent paper, Raccah et al. (2021) claimed that the prefrontal cortex (PfC) is not causally involved in enabling consciousness, based on a review of intracranial electrical stimulation (iES) experiments. We will show that Raccah et al.’s claim that the prefrontal cortex (PfC) does not support consciousness is incorrect.

Aug 2, 2023

Scientists Discover a Unique Group of Neurons With a Remarkable Ability

Posted by in category: neuroscience

A group of nerve cells in the brain displays a remarkable ability to halt all forms of movement, as revealed by a recent study conducted on mice. This finding contributes significantly to our understanding of how the nervous system exercises control over our movements.

When a hunting dog detects the scents of a deer, it sometimes completely freezes. This phenomenon can also be observed in humans who must focus intently on a complex task.

Now, a recent discovery contributes to our understanding of what happens in the brain when we abruptly stop moving.

Aug 2, 2023

CERN Physicists Measure Higgs Boson’s Mass with Unprecedented Precision

Posted by in category: particle physics

The ATLAS and CMS collaborations at CENR’s Large Hadron Collider (LHC) have been making ever more precise measurements of the Higgs boson’s mass since the particle’s discovery.

The new ATLAS measurement combines two results: a new Higgs boson mass measurement based on an analysis of the particle’s decay into two high-energy photons (diphoton channel) and an earlier mass measurement based on a study of its decay into four leptons (four-lepton channel).

The new measurement in the diphoton channel, which combines analyses of the full ATLAS data sets from Runs 1 and 2 of the LHC, resulted in a mass of 125.22 billion electronvolts (GeV) with an uncertainty of only 0.14 GeV.

Aug 2, 2023

Scientists Discover Potential New Function of CRISPR-Cas System

Posted by in categories: bioengineering, biotech/medical, genetics, health

Microorganisms leverage the CRISPR-Cas system as a defense mechanism against viral intrusions. In the realm of genetic engineering, this microbial immune system is repurposed for the targeted modification of the genetic makeup.

Under the leadership of Professor Dr. Alexander Probst, microbiologist at the Research Center One Health Ruhr at the Research Alliance Ruhr a research team has now discovered another function of this specialised genomic sequence: archaea – microorganisms that are often very similar to bacteria in appearance – also use them to fight parasites.

The team has recently published their findings in Nature Microbiology.

Aug 2, 2023

Does space-time remember? The search for gravitational memory

Posted by in categories: cosmology, quantum physics

Detecting the permanent imprints left by colliding black holes would reveal a universe saturated with infinite symmetries – and narrow the possibilities for a theory of quantum gravity.

Aug 2, 2023

Euclid Space Telescope To Shed Light on the Dark Universe — “A Revolution in Physics Is Almost Guaranteed”

Posted by in categories: alien life, physics, satellites

Euclid, a space mission led by the European Space Agency.

The European Space Agency (ESA) is an intergovernmental organization dedicated to the exploration and study of space. ESA was established in 1975 and has 22 member states, with its headquarters located in Paris, France. ESA is responsible for the development and coordination of Europe’s space activities, including the design, construction, and launch of spacecraft and satellites for scientific research and Earth observation. Some of ESA’s flagship missions have included the Rosetta mission to study a comet, the Gaia mission to create a 3D map of the Milky Way, and the ExoMars mission to search for evidence of past or present life on Mars.

Aug 2, 2023

Quantum 101 Episode 5: Quantum Entanglement Explained

Posted by in categories: cosmology, information science, particle physics, quantum physics

Quantum entanglement is one of the most intriguing and perplexing phenomena in quantum physics. It allows physicists to create connections between particles that seem to violate our understanding of space and time.

This video discusses what quantum entanglement really is, and the experiments that help us understand it. The results of these experiments have applications in new technologies that will forever change our world.

Continue reading “Quantum 101 Episode 5: Quantum Entanglement Explained” »

Aug 2, 2023

How random chance changed the man who invented modern probability

Posted by in categories: genetics, mathematics, neuroscience

If two statisticians were to lose each other in an infinite forest, the first thing they would do is get drunk. That way, they would walk more or less randomly, which would give them the best chance of finding each other. However, the statisticians should stay sober if they want to pick mushrooms. Stumbling around drunk and without purpose would reduce the area of exploration, and make it more likely that the seekers would return to the same spot, where the mushrooms are already gone.

Such considerations belong to the statistical theory of “random walk” or “drunkard’s walk,” in which the future depends only on the present and not the past. Today, random walk is used to model share prices, molecular diffusion, neural activity, and population dynamics, among other processes. It is also thought to describe how “genetic drift” can result in a particular gene—say, for blue eye color—becoming prevalent in a population. Ironically, this theory, which ignores the past, has a rather rich history of its own. It is one of the many intellectual innovations dreamed up by Andrei Kolmogorov, a mathematician of startling breadth and ability who revolutionized the role of the unlikely in mathematics, while carefully negotiating the shifting probabilities of political and academic life in Soviet Russia.