Toggle light / dark theme

A joint research project of Johannes Gutenberg University Mainz (JGU), the University of Siegen, Forschungszentrum Jülich, and the Elettra Synchrotron Trieste has achieved a new milestone for the ultra-fast control of magnetism. The international team has been working on magnetization configurations that exhibit chiral twisting. Chirality is a symmetry breaking, which occurs, for example, in nature in molecules that are essential for life. Chirality is also referred to as handedness, since hands are an everyday example of two items that—arranged in a mirror-inverted manner—cannot be superimposed onto each other. Magnetization configurations with a fixed chirality are currently investigated intensively due to their fascinating properties such as enhanced stability and efficient manipulation by current. These magnetic textures thus promise applications in the field of ultrafast chiral spintronics, for example in ultrafast writing and controlling of chiral topological magnetic objects such as magnetic skyrmions, i.e., specially twisted magnetization configurations with exciting properties.

The new insights published in Nature Communications shed light on the ultrafast dynamics after optical excitation of chiral spin structures compared to collinear spin structures. According to the researchers’ findings, the chiral order restores faster compared to the collinear order after excitation by an infrared laser.

The research team performed small angle X-ray scattering experiments on magnetic thin film samples stabilizing chiral magnetic configurations at the free electron laser (FEL) facility FERMI in Trieste in Italy. The facility provides the unique possibility to study the magnetization dynamics with femtosecond time resolution by using circular left polarized or right polarized light. The results indicate a faster recovery of chiral order compared to collinear magnetic order dynamics, which means that twists are more stable than straight magnetic configurations.

Researchers at Tohoku University and the Japan Atomic Energy Agency (JAEA) have discovered a new spintronic phenomenon—a persistent rotation of chiral-spin structure.

Their discovery was published in the journal Nature Materials on May 13, 2021.

Tohoku University and JAEA researchers studied the response of chiral-spin of a non-collinear antiferromagnet Mn3Sn thin film to electron spin injection and found that the chiral-spin structure shows persistent rotation at zero . Moreover, their frequency can be tuned by the applied current.

There is now a new addition to the magnetic family: thanks to experiments at the Swiss Light Source SLS, researchers have proved the existence of altermagnetism. The experimental discovery of this new branch of magnetism is reported in Nature and signifies new fundamental physics, with major implications for spintronics.

Magnetism is a lot more than just things that stick to the fridge. This understanding came with the discovery of antiferromagnets nearly a century ago. Since then, the family of magnetic materials has been divided into two fundamental phases: the ferromagnetic branch known for several millennia and the antiferromagnetic branch.

The experimental proof of a third branch of magnetism, termed altermagnetism, was made at the Swiss Light Source SLS, by an international collaboration led by the Czech Academy of Sciences together with Paul Scherrer Institute PSI.

Scientists are investigating whether an oral drug sprinkled with gold nanoparticles could one day treat neurodegenerative diseases like Parkinson’s and multiple sclerosis.

The experimental medicine, called CNM-Au8, has now shown success in boosting the brain’s metabolism in phase II clinical trials.

Research on the safety and efficacy of the daily drug is still ongoing, but the initial results have researchers hopeful. The medicine contains suspended nanoparticles of gold that can apparently pass the blood-brain barrier and improve energy supply to neurons, preventing their decline.

An interesting new attack on biometric security has been outlined by a group of researchers from China and the US. PrintListener: Uncovering the Vulnerability of Fingerprint Authentication via the Finger Friction Sound [PDF] proposes a side-channel attack on the sophisticated Automatic Fingerprint Identification System (AFIS). The attack leverages the sound characteristics of a user’s finger swiping on a touchscreen to extract fingerprint pattern features. Following tests, the researchers assert that they can successfully attack “up to 27.9% of partial fingerprints and 9.3% of complete fingerprints within five attempts at the highest security FAR [False Acceptance Rate] setting of 0.01%.” This is claimed to be the first work that leverages swiping sounds to infer fingerprint information.

Biometric fingerprint security is widespread and widely trusted. If things continue as they are, it is thought that the fingerprint authentication market will be worth nearly $100 billion by 2032. However, organizations and people have become increasingly aware that attackers might want to steal their fingerprints, so some have started to be careful about keeping their fingerprints out of sight, and become sensitive to photos showing their hand details.

With less than three weeks until the R2 is finally unveiled, Rivian (RIVN) confirmed it will bring the more affordable electric SUV to Europe.

After opening the R2 website last week, Rivian gave us our first look at the new EV during a teaser video.

The shadowy image shows a smaller-looking version of the R1S, aligning with what we’ve seen in the past. A patent filed by Rivian last month showed a more compact electric SUV with slightly smaller headlights and a rear quarter panel.

UCLA spinout Equatic has developed a carbon removal technology it believes can help the world meet its climate change goals — by converting CO2 in the ocean into seashell dust.

The challenge: To prevent the worst predicted effects of climate change, experts say we need to not only slash our carbon emissions, but also remove and permanently store some of the CO2 that’s already been released.

The ocean does this naturally: it already absorbs about 31% of human-made carbon emissions, but there’s a limit to the amount of CO2 that seawater can absorb before it starts to release the carbon back into the atmosphere. Absorbing CO2 from the air also causes ocean acidification, resulting in further environmental damage.