Toggle light / dark theme

Scientists have made progress in understanding how the brain processes time, potentially rewriting the narrative on neural flexibility and cognitive function.

The research, led by Professor Arkarup Banerjee in the Cold Spring Harbor Laboratory, focused on the vocalizations of Alston’s singing mouse from Costa Rica, offers profound insights into how our brains may bend the perception of time to adapt to varying circumstances.

This phenomenon could have far-reaching implications across numerous fields including technology, education, and therapy.

Researchers at the University of California, Irvine and Los Alamos National Laboratory, publishing in the latest issue of Nature Communications, describe the discovery of a new method that transforms everyday materials like glass into materials scientists can use to make quantum computers.

“The materials we made are substances that exhibit unique electrical or quantum properties because of their specific atomic shapes or structures,” said Luis A. Jauregui, professor of physics & astronomy at UCI and lead author of the new paper. “Imagine if we could transform glass, typically considered an insulating material, and convert it into efficient conductors akin to copper. That’s what we’ve done.”

Conventional computers use silicon as a conductor, but silicon has limits. Quantum computers stand to help bypass these limits, and methods like those described in the new study will help quantum computers become an everyday reality.

Several archaeological finds from across the ancient Greek world have revealed the advanced state of ancient Greek plumbing systems.

Although plumbing is rarely the first thing that comes to mind when one thinks of advanced civilizations – indeed, the gleaming columns of stunning temples are a much more typical image in the popular imagination – adequate hygiene and sanitation are a cornerstone of any sophisticated and functioning society.

The ancient Greeks installed plumbing, drainage systems, and infrastructure to supply water to their cities. As urban areas grew, and political life increasingly revolved around the polis (city), ensuring that these areas were adequately sanitized and had access to clean water became more important.

Facial recognition is a technology that can identify or verify a person’s identity based on their face. It can be used for various purposes, such as unlocking smartphones, verifying identities at airports, or finding missing persons. However, facial recognition also seriously threatens personal privacy, as it can be used to track, monitor, or profile people without their consent or knowledge. For example, some governments or companies may use facial recognition to spy on citizens, customers, or competitors or to collect and sell their data.

How can we prevent facial recognition from invading our privacy?

To protect our facial privacy, some researchers have proposed different methods to prevent facial recognition from working. These methods, collectively called anti-facial recognition (AFR), aim to hide, distort, or replace the faces in images or videos. For instance, some AFR methods use masks, makeup, glasses, or hats to cover or alter facial features. Other AFR methods use software to blur, pixelate, or swap the faces in digital media.