Toggle light / dark theme

Dr. Jean Ristaino: “We searched those descriptions by keywords, and by doing that we were able to recreate the original outbreak maps using location coordinates mentioned in the documents. We were also trying to learn what people were thinking about the disease at the time and where it came from.”


Can plant diseases be tracked through analyzing past reports? This is what a recent study published in Scientific Reports hopes to address as a team of researchers at North Carolina State University (NCSU) attempted to ascertain the causes behind blight disease on plants, known as Phytophthora infestans, that resulted in the Irish potato famine during the 1840s. This study holds the potential to help scientists and farmers not only better understand the causes of blight disease in plants, but also how they might be able to predict them in the future.

Image of a blight lesion on a potato leaf. (Credit: Jean Ristaino, NC State University)

For the study, the researchers analyzed United States farm reports from 1,843 to 1,845 by searching for keywords, including “evil”, “murrain”, “rot”, “black spots”, and “decay”, just to name a few, within the scanned documents using the computer programming language, Python. In the end, the researchers discovered a notable increase in the usage of the keywords, “disease”, “blight”, and “rot” within the reports between 1,843 and 1,845, with the researchers noting the usage of these keywords began occurring in 1,844, indicating the disease began in 1843.

Summary: Researchers developed an artificial intelligence model that accurately determines the sex of individuals based on brain scans, with over 90% success. This breakthrough supports the theory that significant sex differences in brain organization exist, challenging long-standing controversies.

The AI model focused on dynamic MRI scans, identifying specific brain networks—such as the default mode, striatum, and limbic networks—as critical in distinguishing male from female brains.

This research not only deepens our understanding of brain development and aging but also opens new avenues for addressing sex-specific vulnerabilities in psychiatric and neurological disorders.

Have you ever imagined listening to the brain’s activity as it unfolds in real-time? Researchers from Columbia University have pioneered a technique that transforms complex neuroimaging data into a captivating audiovisual experience, akin to watching a movie with a musical soundtrack. This novel approach allows scientists to ‘see’ and ‘hear’ the brain’s intricate workings, offering fresh insights into its behavior during various tasks.

The details of their work have been published in the journal PLOS One.

The motivation behind this study stems from a growing challenge in neuroscience: the vast amount of data generated by advanced brain imaging techniques. Technologies like functional magnetic resonance imaging (fMRI) and wide-field optical mapping (WFOM) capture the dynamic, multi-dimensional activities of the brain, revealing patterns of neurons firing and blood flow changes.

Injuries in the central nervous system heal poorly because cavities scar. Researchers hope to remedy this problem by filling the cavities in such a way that stem cells feel comfortable in them.

Researchers from Bochum and Dortmund have created an artificial cell environment that could promote the regeneration of nerves. Usually, injuries to the brain or spinal cord don’t heal easily due to the formation of fluid-filled cavities and scars that prevent tissue regeneration. One starting point for medical research is therefore to fill the cavities with a substance that offers neural stem cells optimal conditions for proliferation and differentiation. The team from Ruhr University Bochum and TU Dortmund University, both in Germany, showed that positively charged hydrogels can promote the survival and growth of stem cells.

Dr. Kristin Glotzbach and Professor Andreas Faissner from the Department of Cell Morphology and Molecular Neurobiology in Bochum cooperated with Professor Ralf Weberskirch and Dr. Nils Stamm from the Faculty of Chemistry and Chemical Biology at TU Dortmund University. The team describes the findings in the American Chemical Society Journal Biomaterials Science and Engineering from January 16, 2024.

Researchers at the University of Trento, Italy, have developed a novel approach for prime factorization via quantum annealing, leveraging a compact modular encoding paradigm and enabling the factorization of large numbers using D-Wave quantum devices.

Prime factorization is the procedure of breaking down a number into its prime components. Every integer greater than one can be uniquely expressed as a product of prime numbers.

In cryptography, prime factorization holds particular importance due to its relevance to the security of encryption algorithms, such as the widely used RSA cryptosystem.