Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Physicists observe an elusive form of the Hall effect for the first time

A giant anomalous Hall effect (AHE) has been observed in a nonmagnetic material for the first time, as reported by researchers from Japan. This surprising result was achieved using high-quality Cd3As2 thin films, a Dirac semimetal, under an in-plane magnetic field. By modulating the material’s band structure, the team isolated the AHE and traced its origin to orbital magnetization rather than spin, challenging long-held assumptions in condensed matter physics.

In 1879, American physicist Edwin Hall discovered that a voltage develops across a conductor when it carries an in a , caused by the sideways deflection of moving charges. This phenomenon, which later became known as the Hall effect, quickly became a hot topic in the field and led to notable advances in the theoretical, experimental, and practical realms alike. Soon after the initial discovery of the Hall effect, scientists noticed that exhibited a similar phenomenon—this was coined the anomalous Hall effect (AHE).

Much more puzzling than the ordinary Hall effect, the AHE has stirred up debate among physicists for decades regarding the true nature of its origin. Some theoretical predictions have even hinted that AHE may be possible even in nonmagnetic materials. However, experimental confirmation of these predictions had never been achieved—until now.

Clever algorithm enables real-time noise mitigation in quantum devices

Quantum researchers have deployed a new algorithm to manage noise in qubits in real time. The method can be applied to a wide range of different qubits, even in large numbers.

Noise is the “ghost in the machine” in the effort to make work. Certain quantum devices use qubits—the central component of any quantum processor—and they are extremely sensitive to even small disturbances in their environment.

A collaboration between researchers from the Niels Bohr Institute, MIT, NTNU, and Leiden University has now resulted in a method to effectively manage the noise. The result has been published in PRX Quantum.

Astronomers Capture Most Detailed Thousand-Color Image of a Galaxy

A new ultra-detailed map of the Sculptor Galaxy exposes stellar life and hidden structures, offering new insights into how small-scale processes influence entire galaxies. Astronomers have unveiled a remarkable new view of the Sculptor Galaxy, producing a highly detailed image that exposes featur

The anti-Kronos effect: How bacterial viruses protect their offspring to maximize spread

University of Toronto researchers have uncovered how bacterial viruses protect their progeny in order to maximize their reach. The phenomenon, described in a study published in Nature, relies on viral proteins to fine-tune structures on the surface of the bacterial host cell and is widely conserved—pointing to a previously unknown parallel between microbial and human immunity.

The researchers dubbed their discovery the anti-Kronos effect, after the Greek god who ate his children.

Researchers have long known that once a cell is infected by a , it can block subsequent reinfection by the same or closely related viruses. This process, called superinfection exclusion, was first described in bacteriophages, the viruses that infect .

/* */