Toggle light / dark theme

Craters on the moon could hold over a trillion dollars’ worth of platinum and other precious metals deposited there by asteroids. That means lunar prospecting may be more economically viable than travelling to asteroids individually to mine them – but the legality of doing this on the moon remains unclear.

Jayanth Chennamangalam, an independent researcher in Vancouver, Canada, and his colleagues looked at whether there may be commercial quantities of platinum group metals (platinum, palladium, rhodium, ruthenium, iridium and osmium) that were left behind by asteroids hitting the lunar surface.

Image: NASA’s Scientific Visualization Studio


Mining craters on the moon could be more practical than extracting precious metals from asteroids, but it might also introduce new legal difficulties.

By James Woodford

For more than 40 years, the Search for Extraterrestrial Intelligence (SETI) organization has turned its gaze toward the cosmos in search for an answer to one of humanity’s greatest questions: Are we alone? Often taking the form of the “Fermi paradox”—a 75-year-old thought experiment that explores why there are so many worlds, yet seemingly no alien civilizations—this grand question has inspired a lot of possible solutions. Maybe life is much rarer than we imagine? Maybe it’s incredibly difficult to evolve into a modern civilization like ours? Or maybe aliens are speaking in a language we simply don’t understand.

The universe speaks in mathematics, yet we experience it in poetry. This fundamental paradox — that objective quantities somehow give rise to subjective qualities — represents perhaps the most profound mystery in the architecture of consciousness. At the precise intersection where measurable physical magnitudes transform into felt experience lies perception itself, functioning as the universe’s most elegant translation device, converting the quantitative substrate of reality into the qualitative texture of conscious life.

Consider the photon, that discrete packet of electromagnetic energy oscillating at precisely 550 nanometers. Physics describes it with mathematical precision: wavelength, frequency, amplitude — pure quantity divorced from any subjective dimension. Yet when this photon encounters the rhodopsin molecules within our retinal cells, something extraordinary occurs. The quantitative description remains accurate but suddenly insufficient. The same electromagnetic radiation that physics measures as wavelength 550nm becomes, through the alchemy of perception, the irreducible experience we call “green.” This transformation represents not merely a change in descriptive language but a fundamental ontological shift — the emergence of an entirely new category of being.

Maurice Merleau-Ponty recognized this threshold when he observed that “the body is our general medium for having a world” (Merleau-Ponty, 1945/2012, p. 147). The lived body serves as the crucial mediator between the quantitative realm that physics describes and the qualitative realm that consciousness inhabits. Through our sensorimotor engagement with the world, objective magnitudes undergo a metamorphosis into subjective meanings. The body is not merely a receiver of information but an active participant in the creation of experiential reality itself.

We are currently facing the possibility of achieving immortality for humans by 2030. This prediction comes from renowned futurist Ray Kurzweil, who has a history of making accurate predictions. He anticipates that with the ongoing progress in genetics, robotics, and nanotechnology, we will soon have nanobots coursing through our bloodstream, which could enable us to live forever. It’s truly remarkable to consider that this could be a reality within just seven years.

Nanobots, which are small robots sized between 50–100 nm in width, are currently being used in various clinical medical applications. They are used in research as DNA probes, imaging materials for cells, and targeted delivery vehicles for cells. According to Kurzweil, nanobots represent the future of medicine.

They will be capable of repairing our bodies at a cellular level, making us resistant to diseases, aging, and, ultimately death. Additionally, he theorizes that humans may be able to transfer their consciousness into digital form, leading to immortality.

At the heart of this breakthrough – driven by Japan’s National Institute of Information and Communications Technology (NICT) and Sumitomo Electric Industries – is a 19-core optical fiber with a standard 0.125 mm cladding diameter, designed to fit seamlessly into existing infrastructure and eliminate the need for costly upgrades.

Each core acts as an independent data channel, collectively forming a “19-lane highway” within the same space as traditional single-core fibers.

Unlike earlier multi-core designs limited to short distances or specialized wavelength bands, this fiber operates efficiently across the C and L bands (commercial standards used globally) thanks to a refined core arrangement that slashes signal loss by 40% compared to prior models.

With smartphones, game consoles and computers, it’s easy to rack up screen time these days. Of course, this isn’t great for your eyes, as anyone who has suffered an eyestrain hangover after spending hours gaming or doomscrolling knows. Staring at screens all the time tires out the ciliary muscles in your eyes that are responsible for focusing on objects, which can cause you to become near-sighted. However, the answer to improving your vision could be… more gaming?

In a recent study, researchers at Kwansei Gakuin University in Japan developed a VR game that aims to improve players’ eyesight. Although more research is needed, this game could potentially be used to help people with simple myopia (near-sightedness) bolster their vision.

It’s a relatively simple target shooting game developed in Unity for Meta Quest 2. The game features three lanes, each with a circular target on a stick. Pressing down the trigger button on the controller activates a virtual laser beam. Pointing this laser towards a lane highlights the lane and target and puts the player into “aim” mode. But to successfully hit the target, players have to move the controller’s stick in the direction indicated by the small Landolt C (a black ring shape with a gap used in Japanese eye tests) in the middle of the target.

If you thought storing data inside DNA was cool, here’s something even more fascinating. Scientists at the University of Texas at Austin (UT Austin) have invented a way to store digital information inside synthetic polymer molecules. In short, they are transforming tiny bits of plastic into memory banks.

They even used their molecular system to encode a complex 11-character password and then decode it using only electrical signals, without any power, and the expensive and bulky tools typically used for reading molecular data.

Ischaemic heart disease remains the main cause of death worldwide. 1 Within its multifactorial aetiology low-density lipoprotein (LDL) and other apolipoprotein (apo) B-containing lipoproteins play a central, causal role, promoting the development of the underlying process of atherosclerosis. The use of statins and other drugs—ezetimibe, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, bempedoic acid—to lower LDL is a central strategy in the prevention of atherosclerotic cardiovascular disease (ASCVD) in both primary and secondary settings. 2 However, in many individuals, a substantial ASCVD risk remains after LDL-cholesterol (LDL-C) goal achievement, and elevated plasma triglyceride (TG) is recognised as an important component of this residual risk. 3 Plasma TG, or more specifically TG-rich lipoproteins (TRL), is therefore an additional target for lipid-lowering therapy. Outcome studies of TG lowering using classical drugs such as fibrates and high-dose niacin when added to statins failed to demonstrate further ASCVD risk reduction, although retrospective analyses suggest that subgroups characterised by high TG and low high-density lipoprotein (HDL) may have positive results. 4–7 An alternative approach, treatment with high-dose eicosapentaenoic acid (EPA), has been shown to reduce cardiovascular risk in patients with (and without) hypertriglyceridaemia who are on statins. 8–10

This review explores the concepts behind, and practical implementation of, an evidence-based therapeutic strategy that tailors further intervention according to the plasma lipid profile in patients on standard statin therapy who are often undertreated. 11

Genetic analyses provide robust evidence that elevated TG is a causal risk factor for ASCVD 12 13 and underpin the finding from epidemiological studies that raised TG levels are positively and linearly related to cardiovascular risk (figure 1A). 14 15 The importance of these observations is that they reveal an often unaddressed major risk factor that is of particular relevance in people with obesity or type 2 diabetes in whom TG levels are frequently elevated. 16 Further, outcome trials have shown that elevated TG levels (again especially in type 2 diabetics) are associated with high residual cardiovascular risk in statin-treated patients with established cardiovascular disease, even if they have well-controlled LDL-C. 17–19.

Depression, characterized by persistent sadness, hopelessness and a lack of interest in previously enjoyed activities, is one of the most common mental health disorders. Recent estimates by the World Health Organization (WHO) suggest that approximately 5% of the global population suffers from depression.

For decades, researchers have been trying to devise safe and effective treatments for that cause minimal or no side effects. This led to the introduction of a wide range of strategies, ranging from psychotherapy and to a wide range of pharmacological drugs, including (SSRIs), serotonin-norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), monoamine oxidase inhibitors (MAOIs) and atypical antidepressants.

Most people diagnosed with depression eventually find a suitable treatment for them via a trial-and-error process, ultimately leading to their recovery. Some individuals, however, can experience for prolonged periods of time, finding that no treatment ultimately eases their symptoms.